Publications by authors named "Rossana Sirabella"

Among the non-motor symptoms associated with Parkinson's disease (PD), cognitive impairment is one of the most common and disabling. It can occur either early or late during the disease, and it is heterogeneous in terms of its clinical manifestations, such as Subjective Cognitive Dysfunction (SCD), Mild Cognitive Impairment (MCI), and Parkinson's Disease Dementia (PDD). The aim of the present review is to delve deeper into the molecular mechanisms underlying cognitive decline in PD.

View Article and Find Full Text PDF

Semaphorin 3A (SEMA3A) plays a crucial role in the development, differentiation, and plasticity of specific types of neurons that secrete Gonadotropin-Releasing Hormone (GnRH) and regulates the acquisition and maintenance of reproductive competence in humans and mice. Its insufficient expression has been linked to reproductive disorders in humans, which are characterized by reduced or failed sexual competence. Various mutations, polymorphisms, and alternatively spliced variants of SEMA3A have been associated with infertility.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a neurodegenerative disorder, is the most common cause of dementia in the elderly population. Since its original description, there has been intense debate regarding the factors that trigger its pathology. It is becoming apparent that AD is more than a brain disease and harms the whole-body metabolism.

View Article and Find Full Text PDF

The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca-sensitive protein exerting a dual mechanism of action to regulate several Ca-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins.

View Article and Find Full Text PDF

Background: Semaphorins (Sema) belong to a large family of repellent guidance cues instrumental in guiding axons during development. In particular, Class 3 Sema (Sema 3) is among the best characterized Sema family members and the only produced as secreted proteins in mammals, thereby exerting both autocrine and paracrine functions. Intriguingly, an increasing number of studies supports the crucial role of the Sema 3A in hippocampal and cortical neurodevelopment.

View Article and Find Full Text PDF
Article Synopsis
  • Sodium/Calcium exchangers, specifically the NCKX2 isoform, are crucial in brain ischemia, with their absence worsening ischemic damage.
  • This study aimed to investigate the role of NCKX2 in neuroprotection offered by ischemic preconditioning by examining its expression and the involvement of AKT and calpain.
  • Results indicated that NCKX2 expression increases in protected brain areas post-preconditioning, is regulated by p-AKT, and that knocking out NCKX2 negates the protective effects of preconditioning, highlighting its potential as a target for stroke treatment.
View Article and Find Full Text PDF

The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson's disease.

View Article and Find Full Text PDF

Remote limb ischemic postconditioning (RLIP) is an experimental strategy in which short femoral artery ischemia reduces brain damage induced by a previous harmful ischemic insult. Ionic homeostasis maintenance in the CNS seems to play a relevant role in mediating RLIP neuroprotection and among the effectors, the sodium-calcium exchanger 1 (NCX1) may give an important contribution, being expressed in all CNS cells involved in brain ischemic pathophysiology. The aim of this work was to investigate whether the metal responsive transcription factor 1 (MTF-1), an important hypoxia sensitive transcription factor, may (i) interact and regulate NCX1, and (ii) play a role in the neuroprotective effect mediated by RLIP through NCX1 activation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a few early detection strategies. We previously proposed the amyloid precursor protein (APP) tyrosine 682 (Tyr682) residue as a valuable target for the development of new innovative pharmacologic or diagnostic interventions in AD. Indeed, when APP is phosphorylated at Tyr682, it is forced into acidic neuronal compartments where it is processed to generate neurotoxic amyloid β peptides.

View Article and Find Full Text PDF

It has been demonstrated that the K-dependent Na/Ca exchanger, NCKX2, is a new promising stroke neuroprotective target. However, because no pharmacological activator of NCKX2 is still available, microRNA (miRNA) may represent an alternative method to modulate NCKX2 expression. In particular, by bioinformatics analysis, miR-223-5p emerged as a possible modulator of NCKX2 expression.

View Article and Find Full Text PDF

In humans, mutation of glycine 93 to alanine of Cu/Zn superoxide dismutase type-1 (SOD1-G93 A) has been associated to some familial cases of Amyotrophic Lateral Sclerosis (ALS). Several evidence proposed the involvement of environmental pollutants that like mercury could accelerate ALS symptoms. SH-SY5Y cells stably transfected with SOD1 and G93 A mutant of SOD1 constructs were exposed to non-toxic concentrations (0.

View Article and Find Full Text PDF

Background: In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS).

View Article and Find Full Text PDF

Na-Ca exchanger (NCX) isoforms constitute the major cellular Ca extruding system in neurons and microglia. We herein investigated the role of NCX isoforms in the pathophysiology of Parkinson's disease (PD). Their expression and activity were evaluated in neurons and glia of mice expressing the human A53T variant of α-synuclein (A53T mice), an animal model mimicking a familial form of PD.

View Article and Find Full Text PDF

Preconditioning (PC) is a phenomenon wherein a mild insult induces resistance to a later, severe injury. Although PC has been extensively studied in several neurological disorders, no studies have been performed in amyotrophic lateral sclerosis (ALS). Here we hypothesize that a sub-toxic acute exposure to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA) is able to delay ALS progression in SOD1 G93A mice and that NCX3, a membrane transporter able to handle the deregulation of ionic homeostasis occurring during ALS, takes part to this neuroprotective effect.

View Article and Find Full Text PDF

The molecular pathways involved in methylmercury (MeHg)-induced neurotoxicity are not fully understood. Since pan-Histone deacetylases (HDACs) inhibition has been found to revert the neurodetrimental effect of MeHg, it appeared of interest to investigate whether the pattern of HDACs isoform protein expression is modified during MeHg-induced neurotoxicity and the transcriptional/transductional mechanisms involved. SH-SY5Y neuroblastoma cells treated with MeHg 1 μM for 12 and 24 h showed a significant increase of HDAC4 protein and gene expression, whereas the HDACs isoforms 1-3, 5, and 6 were unmodified.

View Article and Find Full Text PDF

Ethylmercury thiosalicylate (thimerosal) is an organic mercury-based compound commonly used as an antimicrobial preservative that has been found to be neurotoxic. In contrast, histone deacetylases (HDACs) inhibition has been found to be neuroprotective against several environmental contaminants, such as polychlorinated biphenyls, di-2-ethylhexyl phthalate, and methylmercury. The aim of this study was to investigate the effect of HDAC inhibition on thimerosal-induced neurotoxicity in neuroblastoma cells and cortical neurons.

View Article and Find Full Text PDF

Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases.

View Article and Find Full Text PDF

Background And Purpose: The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning.

View Article and Find Full Text PDF

Three different Na/Ca exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, are expressed in brain where they play a relevant role in maintaining Na and Ca homeostasis. Although the neuroprotective roles of NCX2 and NCX3 in stroke have been elucidated, the relevance of NCX1 is still unknown because of embryonic lethality of its knocking-out, heart dysfunctions when it is overexpressed, and the lack of selectivity in currently available drugs. To overcome these limitations we generated two conditional genetically modified mice that upon tamoxifen administration showed a selective decrease or increase of NCX1 in cortical and hippocampal neurons.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a highly neurotoxic compound that, in adequate doses, can cause damage to the brain, including developmental defects and in severe cases cell death. The RE-1-silencing transcription factor (REST) has been found to be involved in the neurotoxic effects of environmental pollutants such as polychlorinated biphenyls (PCBs). In this study, we investigated the effects of MeHg treatment on REST expression and its role in MeHg-induced neurotoxicity in neuroblastoma SH-SY5Y cells.

View Article and Find Full Text PDF

The Na(+)-Ca(2+) exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E.

View Article and Find Full Text PDF