In vivo studies suggest that the phenolic component contributes to the anti-inflammatory and antiatherosclerotic actions of olive oil; however, the effects in circulating cells are not fully characterized. Monocytes play a key role in inflammation-based diseases by expressing several molecules, including metalloproteinases (MMPs). In the present study, we investigated the effects of olive oil phenolic extract and individual compounds on MMP-9 in THP-1 cells, a human monocyte-like cell line.
View Article and Find Full Text PDFThe aim of the present study was to confirm that olive oil phenols reduce human platelet aggregability and to verify the hypothesis that cAMP- and cGMP- phosphodiesterases (PDE) could be one of the targets of the biological effect. Four extracts from oils characterized by a high phenol content (HPE), and low phenol levels (LPE) were prepared and analyzed qualitatively and quantitatively by HPLC-UV and electrospray ionization-MS/MS. Human washed platelets stimulated with thrombin were used for the aggregation assay.
View Article and Find Full Text PDFThe Mediterranean diet reduces the risk of coronary artery disease as a consequence of its high content of antioxidants, namely, hydroxytyrosol (HT) and oleuropein aglycone (OleA), typical of virgin olive oil. Because intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1) and E-selectin are crucial for endothelial activation, the role of the phenolic extract from extra virgin olive oil (OPE), OleA, HT, and homovanillyl alcohol (HVA) on cell surface and mRNA expression in human umbilical vascular endothelial cells (HUVEC) was evaluated. OPE strongly reduced cell surface expression of ICAM-1 and VCAM-1 at concentrations physiologically relevant (IC50 < 1 microM), linked to a reduction in mRNA levels.
View Article and Find Full Text PDF