Publications by authors named "Rossana Chan"

Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol.

View Article and Find Full Text PDF

Terpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5 sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent.

View Article and Find Full Text PDF

To facilitate enzyme and pathway engineering, a selection was developed for improved sesquiterpene titers in Saccharomyces cerevisiae. α-Bisabolene, a candidate advanced biofuel, was found to protect yeast against the disruptive action of nonionic surfactants such as Tween 20 (T20). An experiment employing competition between two strains of yeast, one of which makes twice as much bisabolene as the other, demonstrated that growth in the presence of T20 provided sufficient selective pressure to enrich the high-titer strain to form 97% of the population.

View Article and Find Full Text PDF

Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E.

View Article and Find Full Text PDF

Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene.

View Article and Find Full Text PDF

Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003).

View Article and Find Full Text PDF

Successful metabolic engineering relies on methodologies that aid assembly and optimization of novel pathways in microbes. Many different factors may contribute to pathway performance, and problems due to mRNA abundance, protein abundance, or enzymatic activity may not be evident by monitoring product titers. To this end, synthetic biologists and metabolic engineers utilize a variety of analytical methods to identify the parts of the pathway that limit production.

View Article and Find Full Text PDF

Background: Increasing energy costs and environmental concerns have motivated engineering microbes for the production of "second generation" biofuels that have better properties than ethanol.

Results And Conclusion: Saccharomyces cerevisiae was engineered with an n-butanol biosynthetic pathway, in which isozymes from a number of different organisms (S. cerevisiae, Escherichia coli, Clostridium beijerinckii, and Ralstonia eutropha) were substituted for the Clostridial enzymes and their effect on n-butanol production was compared.

View Article and Find Full Text PDF

Saccharomyces cerevisiae utilizes several regulatory mechanisms to maintain tight control over the intracellular level of farnesyl diphosphate (FPP), the central precursor to nearly all yeast isoprenoid products. High-level production of non-native isoprenoid products requires that FPP flux be diverted from production of sterols to the heterologous metabolic reactions. To do so, expression of the gene encoding squalene synthase (ERG9), the first committed step in sterol biosynthesis, was down-regulated by replacing its native promoter with the methionine-repressible MET3 promoter.

View Article and Find Full Text PDF

Background: The efficacy of intracoronary gamma radiation (IRT-gamma) in reducing recurrent in-stent restenosis (ISR) is well established using doses of 14-18 Gy. We sought to examine whether an escalation in dose to 21 Gy is safe and confers additional benefit in reducing repeat revascularization and major adverse cardiac events (MACE) in patients with diffuse ISR.

Methods: Forty-seven patients with diffuse ISR (lesion length 20-80 mm) in native coronary arteries (n=25) and saphenous vein grafts (n=22) underwent percutaneous transluminal coronary angioplasty and/or additional stents followed by IRT-gamma using the Checkmate system (Cordis) with a dose of 21 Gy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf4k1u656g8ao45ad9e7enk7k1r2m6vat): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once