Strong molecular dopants for organic semiconductors that are stable against diffusion are in demand, enhancing the performance of organic optoelectronic devices. The conventionally used p-dopants based on 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its derivatives "FTCN(N)Q", such as 2,3,4,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) and 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ), feature limited oxidation strength, especially for modern polymer semiconductors with high ionization energy (IE). These small molecular dopants also exhibit pronounced diffusion in the polymer hosts.
View Article and Find Full Text PDFProc ACM Hum Comput Interact
January 2021
Negative attitudes shape experiences with stigmatized conditions such as dementia, from affecting social relationships to influencing willingness to adopt technology. Consequently, attitudinal change has been identified as one lever to improve life for people with stigmatized conditions. Though recognized as a scaleable approach, social media has not been studied in terms of how it should best be designed or deployed to target attitudes and understanding of dementia.
View Article and Find Full Text PDFElectronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous.
View Article and Find Full Text PDFElectronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors.
View Article and Find Full Text PDFSimultaneous control over both the energy levels and Fermi level, a key breakthrough for inorganic electronics, has yet to be shown for organic semiconductors. Here, energy level tuning and molecular doping are combined to demonstrate controlled shifts in ionisation potential and Fermi level of an organic thin film. This is achieved by p-doping a blend of two host molecules, zinc phthalocyanine and its eight-times fluorinated derivative, with tunable energy levels based on mixing ratio.
View Article and Find Full Text PDFBacterial cellulose (BC) has attracted a great deal of interest due to its green synthesis and biocompatibility. The nanoscale dimension of BC nanofibers generates an enormous surface area that enhances interactions with water and soluble components within aqueous solution. Recent work has demonstrated that BC is a versatile platform for the formation of metal/metal oxide nanocomposites.
View Article and Find Full Text PDFThe success of newly recruited medical school department chairs has become increasingly important for achievement of organizational goals. An effective onboarding program for these chairs can greatly facilitate early success, as well as satisfaction of the new hire with the position and the school. Onboarding programs can include traditional orientation items such as payroll signup and parking details, but should focus heavily on sharing organizational structure, culture, and how things get done.
View Article and Find Full Text PDF