Publications by authors named "Ross W. Whetten"

Several specialised insects can manipulate normal plant development to induce a highly organised structure known as a gall, which represents one of the most complex interactions between insects and plants. Thus far, the mechanism for insect-induced plant galls has remained elusive. To study the induction mechanism of insect galls, we selected the gall induced by (Diptera: Cecidomyiidae) in cassava (Euphorbiaceae: Crantz) as our model.

View Article and Find Full Text PDF

Single nucleotide polymorphism (SNP) markers are powerful tools for investigating population structures, linkage analysis, and genome-wide association studies, as well as for breeding and population management. The availability of SNP markers has been limited to the most commercially important timber species, primarily due to the cost of genome sequencing required for SNP discovery. In this study, a combination of reference-based and reference-free approaches were used to identify SNPs in Nordmann fir (Abies nordmanniana), a species previously lacking genomic sequence information.

View Article and Find Full Text PDF

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal pathogen of wheat that can rapidly evolve to defeat wheat powdery mildew (Pm) resistance genes.

View Article and Find Full Text PDF

We performed gene and genome targeted SNP discovery towards the development of a genome-wide, multispecies genotyping array for tropical pines. Pooled RNA-seq data from shoots of seedlings from five tropical pine species was used to identify transcript-based SNPs resulting in 1.3 million candidate Affymetrix SNP probe sets.

View Article and Find Full Text PDF

Premise: An informatics approach was used for the construction of an Axiom genotyping array from heterogeneous, high-throughput sequence data to assess the complex genome of loblolly pine ().

Methods: High-throughput sequence data, sourced from exome capture and whole genome reduced-representation approaches from 2698 trees across five sequence populations, were analyzed with the improved genome assembly and annotation for the loblolly pine. A variant detection, filtering, and probe design pipeline was developed to detect true variants across and within populations.

View Article and Find Full Text PDF

Earth's atmosphere is warming and the effects of climate change are becoming evident. A key observation is that both the average levels and the variability of temperature and precipitation are changing. Information and data from new technologies are developing in parallel to provide multidisciplinary opportunities to address and overcome the consequences of these changes in forest ecosystems.

View Article and Find Full Text PDF

Discovering local adaptation, its genetic underpinnings, and environmental drivers is important for conserving forest species. Ecological genomic approaches coupled with next-generation sequencing are useful means to detect local adaptation and uncover its underlying genetic basis in nonmodel species. We report results from a study on flowering dogwood trees (.

View Article and Find Full Text PDF
Article Synopsis
  • - Forest trees are crucial for the environment, economy, and society, showcasing significant genetic diversity influenced by historical climate changes and human impact.
  • - Recent advancements in genomic technologies are enabling deeper insights into how tree genomes interact with their environments, which is vital for their management and conservation.
  • - The 2016 international conference on 'Genomics and Forest Tree Genetics' explored the application of genomic data for breeding and conserving forest genetic resources in the context of climate change and land use.
View Article and Find Full Text PDF

Background: The use of wood as an industrial raw material has led to development of plantation forestry, in which trees are planted, managed, and harvested as crops. The productivity of such plantations often exceeds that of less-intensively-managed forests, and land managers have the option of choosing specific planting stock to produce specific types of wood for industrial use. Stem forking, or division of the stem into two or more stems of roughly equal size, is a character trait important in determining the quality of the stem for production of solid wood products.

View Article and Find Full Text PDF

Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions.

View Article and Find Full Text PDF

Background: The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination.

View Article and Find Full Text PDF

Replacement of the average numerator relationship matrix derived from the pedigree with the realized genomic relationship matrix based on DNA markers might be an attractive strategy in forest tree breeding for predictions of genetic merit. We used genotypes from 3461 single-nucleotide polymorphism loci to estimate genomic relationships for a population of 165 loblolly pine (Pinus taeda L.) individuals.

View Article and Find Full Text PDF

Despite the pivotal role played by R2R3-MYB family members in the regulation of plant gene expression, little is known about post-translational regulation of these proteins. In animals, the MYB family member, c-MYB, is post-translationally modified by a mitogen-activated protein kinase (MAPK), p42(mapk). In order to test the hypothesis that R2R3-MYB proteins may be regulated by MAPK activity, interplay between a R2R3-MYB family member expressed in differentiating pine xylem (Pinus taeda MYB4, PtMYB4) and MAPK proteins expressed in the same tissue was examined.

View Article and Find Full Text PDF

Massively parallel pyrosequencing of DNA fragments immobilized on beads has been applied to genome survey sequencing and transcriptome analysis of a variety of eukaryotic organisms, including laboratory model species, agricultural crops and livestock, and species of interest to population biologists and ecologists. Preparation of sufficient high-quality template for sequencing has been an obstacle to sequence analysis of nucleic acids from tissues or cell types available in limited quantities. We report that the use of a biotinylated primer for polymerase chain reaction amplification allows removal of excess primer and poly(A) tract fragments from the sequencing templates, providing much higher yields of useful sequence information from pyrosequencing of amplified templates.

View Article and Find Full Text PDF

Conception, design, and implementation of cDNA microarray experiments present a variety of bioinformatics challenges for biologists and computational scientists. The multiple stages of data acquisition and analysis have motivated the design of Expresso, a system for microarray experiment management. Salient aspects of Expresso include support for clone replication and randomized placement; automatic gridding, extraction of expression data from each spot, and quality monitoring; flexible methods of combining data from individual spots into information about clones and functional categories; and the use of inductive logic programming for higher-level data analysis and mining.

View Article and Find Full Text PDF

We previously showed that eight laccase genes (Lac 1-Lac 8) are preferentially expressed in differentiating xylem and are associated with lignification in loblolly pine (Pinus taeda) [Sato et al. (2001) J Plant Res 114:147-155]. In this study we generated transgenic tobacco suspension cell cultures that express the pine Lac 1 and Lac 2 proteins, and characterized the abilities of these proteins to oxidize monolignols.

View Article and Find Full Text PDF

The genetic architecture of hybrid fitness characters can provide valuable insights into the nature and evolution of postzygotic reproductive barriers in diverged species. We determined the genome-wide distribution of barriers to introgression in an F(1) hybrid of two Eucalyptus tree species, Eucalyptus grandis (W. Hill ex Maiden.

View Article and Find Full Text PDF

After a long period of little change, the basic concepts of lignin biosynthesis have been challenged by new results from genetic modification of lignin content and composition. New techniques for making directed genetic changes in plants, as well as improvements in the analytical techniques used to determine lignin content and composition in plant cell walls, have been used in experimental tests of the accepted lignin biosynthetic pathway. The lignins obtained from genetically modified plants have shown unexpected properties, and these findings have extended the known range of variation in lignin content and composition.

View Article and Find Full Text PDF

A cDNA encoding a member of the R2R3-MYB family of transcription factors was cloned from a library constructed from differentiating Pinus taeda (loblolly pine) xylem RNA. This MYB family member, Pinus taeda MYB1 (PtMYB1), was most abundantly expressed in differentiating xylem, as assessed by both ribonuclease protection assays, and by northern blot analysis with poly(A)-enriched RNA. Similar to other plant R2R3-MYB family members, recombinant Pt MYB1 protein was able to bind to AC elements in electrophoretic mobility shift assays (EMSAs).

View Article and Find Full Text PDF

We have isolated a gene from loblolly pine, 5NG4, that is highly and specifically induced by auxin in juvenile loblolly pine shoots prior to adventitious root formation, but substantially down-regulated in physiologically mature shoots that are adventitious rooting incompetent. 5NG4 was highly auxin-induced in roots, stems and hypocotyls, organs that can form either lateral or adventitious roots following an auxin treatment, but was not induced to the same level in needles and cotyledons, organs that do not form roots. The deduced amino acid sequence shows homology to the MtN21 nodulin gene from Medicago truncatula.

View Article and Find Full Text PDF

A member of the R2R3-MYB family of transcription factors was cloned from a cDNA library constructed from RNA isolated from differentiating pine xylem. This MYB, Pinus taeda MYB4 (PtMYB4), is expressed in cells undergoing lignification, as revealed by in situ RT-PCR. Electrophoretic mobility shift assays (EMSAs) showed that recombinant PtMYB4 protein is able to bind to DNA motifs known as AC elements.

View Article and Find Full Text PDF