Publications by authors named "Ross W Lindsay"

The interleukin-3 receptor α subunit, CD123, is expressed in many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown.

View Article and Find Full Text PDF

Recombinant adenoviral vectors (rAds) are lead vaccine candidates for protection against a variety of pathogens, including Ebola, HIV, tuberculosis, and malaria, due to their ability to potently induce T cell immunity in humans. However, the ability to induce protective cellular immunity varies among rAds. Here, we assessed the mechanisms that control the potency of CD8 T cell responses in murine models following vaccination with human-, chimpanzee-, and simian-derived rAds encoding SIV-Gag antigen (Ag).

View Article and Find Full Text PDF

Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G.

View Article and Find Full Text PDF

The structure of the HIV-1 envelope membrane-proximal external region (MPER) is influenced by its association with the lipid bilayer on the surface of virus particles and infected cells. To develop a replicating vaccine vector displaying MPER sequences in association with membrane, Env epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, or both were grafted into the membrane-proximal stem region of the vesicular stomatitis virus (VSV) glycoprotein (G). VSV encoding functional G-MPER chimeras based on G from the Indiana or New Jersey serotype propagated efficiently, although grafting of both epitopes (G-2F5-4E10) modestly reduced replication and resulted in the acquisition of one to two adaptive mutations in the grafted MPER sequence.

View Article and Find Full Text PDF

Currently approved adjuvants induce protective Ab responses but are more limited for generating cellular immunity. In this study, we assessed the effect of combining two adjuvants with distinct mechanisms of action on their ability to prime T cells: the TLR3 ligand, polyinosinic:polycytidylic acid (poly I:C), and immunostimulatory complexes (ISCOMs). Each adjuvant was administered alone or together with HIV Gag protein (Gag), and the magnitude, quality, and phenotype of Gag-specific T cell responses were assessed.

View Article and Find Full Text PDF

Molecular adjuvants are important for augmenting or modulating immune responses induced by DNA vaccination. Promising results have been obtained using IL-12 expression plasmids in a variety of disease models including the SIV model of HIV infection. We used a mouse model to evaluate plasmid IL-12 (pIL-12) in a DNA prime, recombinant adenovirus serotype 5 (rAd5) boost regimen specifically to evaluate the effect of IL-12 expression on cellular and humoral immunity induced against both SIVmac239 Gag and Env antigens.

View Article and Find Full Text PDF
Article Synopsis
  • Recent HIV-1 vaccine studies suggest that high levels of serum antibodies may not be crucial for protection, and that mucosal antibodies may play a key role in preventing infections.
  • The study evaluated the Bio-Plex® Suspension Array System for detecting SIV-specific antibodies in rhesus macaques, revealing that this method can identify antibodies in samples that ELISA failed to detect.
  • The Bio-Plex assay demonstrated superior sensitivity and specificity compared to ELISA, detecting antibodies in a significant percentage of samples that were previously negative, thus enhancing the understanding of antibody responses related to vaccine efficacy.
View Article and Find Full Text PDF

A new generation of extremely broad and potent neutralizing antibodies (bNAbs) has been isolated from HIV-infected subjects. This has refocused interest in the sites of vulnerability targeted by these bNAbs and in the potential for designing Envelope (Env) immunogens that display these sites. Standard methods for evaluating HIV-1 vaccine candidates do not enable epitope mapping on the HIV Env spike, the target for NAbs.

View Article and Find Full Text PDF

Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8(+) T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8(+) T cell responses in mice vaccinated with rAds encoding SIV Gag.

View Article and Find Full Text PDF

Recombinant adenovirus (rAd) vectors are being investigated as vaccine delivery vehicles in preclinical and clinical studies. rAds constructed from different serotypes differ in receptor usage, tropism, and ability to activate cells, aspects of which likely contribute to their different immunogenicity profiles. In this study, we compared the infectivity and cell stimulatory capacity of recombinant adenovirus serotype 5 (rAd5), recombinant adenovirus serotype 28 (rAd28), and recombinant adenovirus serotype 35 (rAd35) in association with their respective immunogenicity profiles.

View Article and Find Full Text PDF

The success of a non-live vaccine requires improved formulation and adjuvant selection to generate robust T cell immunity following immunization. Here, using protein linked to a TLR7/8 agonist (conjugate vaccine), we investigated the functional properties of vaccine formulation, the cytokines, and the DC subsets required to induce protective multifunctional T cell immunity in vivo. The conjugate vaccine required aggregation of the protein to elicit potent Th1 CD4+ and CD8+ T cell responses.

View Article and Find Full Text PDF

Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 ("DEC-HIV Gag p24"), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.

View Article and Find Full Text PDF

Replication-defective adenovirus serotype 5 (rAd5) is the most potent recombinant vector for eliciting CD8 T cell responses in humans. In this study, the innate mechanisms that influence T cell responses following rAd5 immunization were assessed in mice. Using rAd5 expressing enhanced GFP (eGFP-rAd5), we show that rAd5 transfects CD11c(+) dendritic cells (DCs) in draining lymph nodes in vivo following s.

View Article and Find Full Text PDF

The quality of a Th1 response can be a prospective correlate of vaccine-mediated protection against certain intracellular pathogens. Using two distinct vaccine platforms, we evaluate the influence of interleukin (IL) 10 production on the magnitude, quality, and protective capacity of CD4(+) T cell responses in the mouse model of Leishmania major infection. Multiparameter flow cytometry was used to delineate the CD4(+) T cell production of interferon (IFN) gamma, IL-2, tumor necrosis factor (TNF), and IL-10 (or combinations thereof) after vaccination.

View Article and Find Full Text PDF

CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor.

View Article and Find Full Text PDF