Publications by authors named "Ross Vander Vorste"

More than half of the world's rivers dry up periodically, but our understanding of the biological communities in dry riverbeds remains limited. Specifically, the roles of dispersal, environmental filtering and biotic interactions in driving biodiversity in dry rivers are poorly understood. Here, we conduct a large-scale coordinated survey of patterns and drivers of biodiversity in dry riverbeds.

View Article and Find Full Text PDF

Recent droughts raise global concern over potential biodiversity loss and mitigating impacts to vulnerable species has become a management priority. However, drought impacts on populations are difficult to predict, in part, because habitat refuges can buffer organisms from harsh environmental conditions. In a global change context, more extreme droughts may turn previously suitable habitats into ecological traps, where vulnerable species can no longer persist.

View Article and Find Full Text PDF

Climate change and human pressures are changing the global distribution and the extent of intermittent rivers and ephemeral streams (IRES), which comprise half of the global river network area. IRES are characterized by periods of flow cessation, during which channel substrates accumulate and undergo physico-chemical changes (preconditioning), and periods of flow resumption, when these substrates are rewetted and release pulses of dissolved nutrients and organic matter (OM). However, there are no estimates of the amounts and quality of leached substances, nor is there information on the underlying environmental constraints operating at the global scale.

View Article and Find Full Text PDF

More freshwater ecosystems are drying in response to global change thereby posing serious threat to freshwater biota and functions. The production of desiccation-resistant forms is an important adaptation that helps maintain biodiversity in temporary freshwaters by buffering communities from drying, but its potential to mitigate the negative effects of drying in freshwater ecosystems could vary greatly across regions and ecosystem types. We explored this context dependency by quantifying the potential contribution of desiccation-resistance forms to invertebrate community recovery across levels of regional drying prevalence (defined as the occurrence of drying events in freshwaters in a given region) and ecosystem types (lentic, lotic) in temporary neotropical freshwaters.

View Article and Find Full Text PDF