High-resolution transmission electron microscopy (HRTEM) examination of nanoparticles requires their placement on some manner of support - either TEM grid membranes or part of the material itself, as in many heterogeneous catalyst systems - but a systematic quantification of the practical imaging limits of this approach has been lacking. Here we address this issue through a statistical evaluation of how nanoparticle size and substrate thickness affects the ability to resolve structural features of interest in HRTEM images of metallic nanoparticles on common support membranes. The visibility of lattice fringes from crystalline Au nanoparticles on amorphous carbon and silicon supports of varying thickness was investigated with both conventional and aberration-corrected TEM.
View Article and Find Full Text PDFTransmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are popular and powerful techniques used to characterize heterogeneous catalysts. Rapid developments in electron microscopy--especially aberration correctors and in situ methods--permit remarkable capabilities for visualizing both morphologies and atomic and electronic structures. The purpose of this review is to summarize the significant developments and achievements in this field with particular emphasis on the characterization of catalysts.
View Article and Find Full Text PDF