The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells.
View Article and Find Full Text PDFStudy Question: Are there differences in Mediator Complex Subunit 12 mutations (MED12) mutation, transcriptomics, and protein expression in uterine myometrium and leiomyomas of Black and White women?
Summary Answer: RNA sequencing, tissue microarray, and immunohistochemistry data revealed that Black and White women have significant differences in their myometrium and leiomyoma profiles.
What Is Known Already: Black women develop uterine leiomyoma earlier than White women, and are more likely to be anemic, have multiple tumors, undergo hysterectomy at an earlier age, have a higher uterine weight, and report very severe pelvic pain.
Study Design, Size, Duration: Uterine tissues were collected from premenopausal women undergoing hysterectomy or myomectomy at Northwestern University Prentice Women's Hospital (Chicago, IL) from 2010 to 2021.
Hemochorial placentation is characterized by the development of trophoblast cells specialized to interact with the uterine vascular bed. We utilized trophoblast stem (TS) cell and mutant rat models to investigate regulatory mechanisms controlling trophoblast cell development. TS cell differentiation was characterized by acquisition of transcript signatures indicative of an endothelial cell-like phenotype, which was highlighted by the expression of anticoagulation factors including tissue factor pathway inhibitor (TFPI).
View Article and Find Full Text PDF