Cancer Res Commun
December 2024
We show in mammalian settings that the capicua C1 functional domain is a supercharger for CIC::DUX4, a poorly studied fusion oncoprotein which drives a rare sarcoma with dismal outcomes.
View Article and Find Full Text PDFAlthough CRISPR-Cas9 technology is poised to revolutionize the treatment of diseases with underlying genetic mutations, it faces some significant issues limiting clinical entry. They include low-efficiency in vivo systemic delivery and undesired off-target effects. Here, we demonstrate, by modifying Cas9 with phosphorothioate-DNA oligos (PSs), that one can efficiently deliver single and bi-specific CRISPR-Cas9/guide RNA (gRNA) dimers in vitro and in vivo with reduced off-target effects.
View Article and Find Full Text PDFRearrangements between genes can yield neomorphic fusions that drive oncogenesis. Fusion oncogenes are made up of fractional segments of the partner genes that comprise them, with each partner potentially contributing some of its own function to the nascent fusion oncoprotein. Clinically, fusion oncoproteins driving one diagnostic entity are typically clustered into a single molecular subset and are often treated a similar fashion.
View Article and Find Full Text PDFFront Cell Dev Biol
May 2024
Capicua ()-rearranged sarcomas are an aggressive subset of undifferentiated round cell sarcomas. CIC::DUX4, the proto-typical CIC fusion oncoprotein is associated with rapid clinical progression and chemotherapy resistance leading to poor clinical outcomes. Recent studies have identified additional CIC fusions (CIC::NUTM1, CIC::FOXO4, and CIC::LEUTX) that largely retain CIC-binding specificity but leverage C-terminal binding partners (NUTM1, FOXO4, and LEUTX) to potentially activate transcriptional programs that drive oncogenesis.
View Article and Find Full Text PDFCerebrospinal fluid tumor-derived DNA (CSF-tDNA) analysis is a promising approach for monitoring the neoplastic processes of the central nervous system. We applied a lung cancer-specific sequencing panel (CAPP-Seq) to 81 CSF, blood, and tissue samples from 24 lung cancer patients who underwent lumbar puncture (LP) for suspected leptomeningeal disease (LMD). A subset of the cohort (N = 12) participated in a prospective trial of osimertinib for refractory LMD in which serial LPs were performed before and during treatment.
View Article and Find Full Text PDFUnlabelled: CIC-DUX4 is a rare and understudied transcription factor fusion oncoprotein. CIC-DUX4 co-opts native gene targets to drive a lethal form of human sarcoma. The molecular underpinnings that lead to oncogenic reprograming and CIC-DUX4 sarcomagenesis remain largely undefined.
View Article and Find Full Text PDFHuman prostate cancer can result from chromosomal rearrangements that lead to aberrant ETS gene expression. The mechanisms that lead to fusion-independent ETS factor upregulation and prostate oncogenesis remain relatively unknown. Here, we show that two neighboring transcription factors, Capicua () and ETS2 repressor factor (), which are co-deleted in human prostate tumors can drive prostate oncogenesis.
View Article and Find Full Text PDFInactivation of Capicua (CIC) or upregulation of yes-associated protein 1, YAP1, leads to broad RAS-RAF-MEK-ERK inhibitor resistance and tumor progression in multiple human cancers. Despite these shared malignant phenotypes, it remains unclear whether CIC and YAP1 are mechanistically linked. Here, we show that the ERK-regulated transcription factor CIC can directly repress YAP1 expression through non-consensus GGAAGGAA DNA-binding motifs in a proximal YAP1 regulatory element.
View Article and Find Full Text PDFThe Warburg effect, aerobic glycolysis, is a hallmark feature of cancer cells grown in culture. However, the relative roles of glycolysis and respiratory metabolism in supporting in vivo tumor growth and processes such as tumor dissemination and metastatic growth remain poorly understood, particularly on a systems level. Using a CRISPRi mini-library enriched for mitochondrial ribosomal protein and respiratory chain genes in multiple human lung cancer cell lines, we analyzed in vivo metabolic requirements in xenograft tumors grown in distinct anatomic contexts.
View Article and Find Full Text PDFThere are more than 70 distinct sarcomas, and this diversity complicates the development of precision-based therapeutics for these cancers. Prospective comprehensive genomic profiling could overcome this challenge by providing insight into sarcomas' molecular drivers. Through targeted panel sequencing of 7494 sarcomas representing 44 histologies, we identify highly recurrent and type-specific alterations that aid in diagnosis and treatment decisions.
View Article and Find Full Text PDFMolecularly targeted cancer therapy has improved outcomes for patients with cancer with targetable oncoproteins, such as mutant EGFR in lung cancer. Yet, the long-term survival of these patients remains limited, because treatment responses are typically incomplete. One potential explanation for the lack of complete and durable responses is that oncogene-driven cancers with activating mutations of EGFR often harbor additional co-occurring genetic alterations.
View Article and Find Full Text PDFCIC-DUX4 rearrangements define an aggressive and chemotherapy-insensitive subset of undifferentiated sarcomas. The CIC-DUX4 fusion drives oncogenesis through direct transcriptional upregulation of cell cycle and DNA replication genes. Notably, CIC-DUX4-mediated CCNE1 upregulation compromises the G1/S transition to confer a dependence on the G2/M cell cycle checkpoint.
View Article and Find Full Text PDFCancer Immunol Immunother
October 2021
Background: Soft-tissue sarcomas (STS) are a rare group of mesenchymal malignancies that account for approximately 1% of adult human cancer. Undifferentiated pleomorphic sarcoma (UPS) is one of the most common subtypes of adult STS. Clinical stratification of UPS patients has not evolved for decades and continues to rely on tumor-centric metrics including tumor size and depth.
View Article and Find Full Text PDFDetailed phylogenies of tumor populations can recount the history and chronology of critical events during cancer progression, such as metastatic dissemination. We applied a Cas9-based, single-cell lineage tracer to study the rates, routes, and drivers of metastasis in a lung cancer xenograft mouse model. We report deeply resolved phylogenies for tens of thousands of cancer cells traced over months of growth and dissemination.
View Article and Find Full Text PDFLung cancer mortality largely results from metastasis. Despite curative surgery many patients with early-stage non-small cell lung cancer ultimately succumb to metastatic relapse. Current risk reduction strategies based on cytotoxic chemotherapy and radiation have only modest activity.
View Article and Find Full Text PDFCapicua (CIC) is a highly conserved transcriptional repressor that is differentially regulated through mitogen-activated protein kinase (MAPK) signaling or genetic alteration across human cancer. CIC contributes to tumor progression and metastasis through direct transcriptional control of effector target genes. Recent findings indicate that CIC dysregulation is mechanistically linked and restricted to specific cancer subtypes, yet convergence on key downstream transcriptional nodes are critical for CIC-regulated oncogenesis across these cancers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2020
Transcription factor fusions (TFFs) are present in ∼30% of soft-tissue sarcomas. TFFs are not readily "druggable" in a direct pharmacologic manner and thus have proven difficult to target in the clinic. A prime example is the CIC-DUX4 oncoprotein, which fuses Capicua (CIC) to the double homeobox 4 gene, DUX4.
View Article and Find Full Text PDFTranscription factor fusion genes create oncoproteins that drive oncogenesis and represent challenging therapeutic targets. Understanding the molecular targets by which such fusion oncoproteins promote malignancy offers an approach to develop rational treatment strategies to improve clinical outcomes. Capicua-double homeobox 4 (CIC-DUX4) is a transcription factor fusion oncoprotein that defines certain undifferentiated round cell sarcomas with high metastatic propensity and poor clinical outcomes.
View Article and Find Full Text PDFPost-transcriptional regulation of RNA stability is a key step in gene expression control. We describe a regulatory program, mediated by the RNA binding protein TARBP2, that controls RNA stability in the nucleus. TARBP2 binding to pre-mRNAs results in increased intron retention, subsequently leading to targeted degradation of TARBP2-bound transcripts.
View Article and Find Full Text PDFMetastasis is the leading cause of death in people with lung cancer, yet the molecular effectors underlying tumor dissemination remain poorly defined. Through the development of an in vivo spontaneous lung cancer metastasis model, we show that the developmentally regulated transcriptional repressor Capicua (CIC) suppresses invasion and metastasis. Inactivation of CIC relieves repression of its effector ETV4, driving ETV4-mediated upregulation of MMP24, which is necessary and sufficient for metastasis.
View Article and Find Full Text PDFOncogenic activation of protein kinase BRAF drives tumor growth by promoting mitogen-activated protein kinase (MAPK) pathway signaling. Because oncogenic mutations in BRAF occur in ∼2-7% of lung adenocarcinoma (LA), BRAF-mutant LA is the most frequent cause of BRAF-mutant cancer mortality worldwide. Whereas most tumor types harbor predominantly the BRAF-mutant allele, the spectrum of BRAF mutations in LA includes BRAF (∼60% of cases) and non-V600E mutant alleles (∼40% of cases) such as BRAF and BRAF The presence of BRAF in LA has prompted clinical trials testing selective BRAF inhibitors such as vemurafenib in BRAF-mutant patients.
View Article and Find Full Text PDFTwo recent studies validate the LMNA-NTRK1 fusion as an oncogenic driver and therapeutic target of TRK inhibitors. The LMNA-NTRK1 fusion occurs at low frequency across multiple tumor types. The studies highlight the increasing need to develop molecular biomarker-based clinical trials across cancer subtypes.
View Article and Find Full Text PDFOne strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS-mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4.
View Article and Find Full Text PDF