Publications by authors named "Ross Lake"

Metastatic castrate-resistant prostate cancer (mCRPC) is a genetically and phenotypically heterogeneous cancer where advancements are needed in biomarker discovery and targeted therapy. A critical and often effective component of treatment includes taxanes. We perform a high-throughput screen across a cohort of 30 diverse patient-derived castrate-resistant prostate cancer (CRPC) organoids to a library of 78 drugs.

View Article and Find Full Text PDF

Canonical RAS signaling, including PI3K/AKT- and RAF/MEK-dependent activities, results mainly from RAS•GTP interaction with its effectors at the plasma membrane. Here, we identified a fundamental, oncogenic, noncanonical RAS•GTP activity that increases XPO1-dependent export of nuclear protein cargo into the cytoplasm and is independent of PI3K/AKT and RAF/MEK signaling. This RAS-dependent step acts downstream from XPO1 binding to nuclear protein cargo and is mediated by a perinuclear protein complex between RAS•GTP and RanGAP1 that facilitates hydrolysis of Ran•GTP to Ran•GDP, which promotes release of nuclear protein cargo into the cytoplasm.

View Article and Find Full Text PDF

Enhancing the efficacy of immunotherapy in brain metastases (BrM) requires an improved understanding of the immune composition of BrM and how this is affected by radiation and dexamethasone. Our two-arm pilot study (NCT04895592) allocated 26 patients with BrM to either low (Arm A) or high (Arm B) dose peri-operative dexamethasone followed by pre-operative stereotactic radiosurgery (pSRS) and resection (n= 13 per arm). The primary endpoint, a safety analysis at 4 months, was met.

View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy.

View Article and Find Full Text PDF

Background: Preclinical models recapitulating the metastatic phenotypes are essential for developing the next-generation therapies for metastatic prostate cancer (mPC). We aimed to establish a cohort of clinically relevant mPC models, particularly androgen receptor positive (AR) bone metastasis models, from LuCaP patient-derived xenografts (PDX) that reflect the heterogeneity and complexity of mPC.

Methods: PDX tumors were dissociated into single cells, modified to express luciferase, and were inoculated into NSG mice via intracardiac injection.

View Article and Find Full Text PDF

To resist lineage-dependent therapies such as androgen receptor inhibition, prostate luminal epithelial adenocarcinoma cells often adopt a stem-like state resulting in lineage plasticity and phenotypic heterogeneity. Castrate-resistant prostate adenocarcinoma can transition to neuroendocrine (NE) and occasionally to amphicrine, co-expressed luminal and NE, phenotypes. We developed castrate-resistant prostate cancer (CRPC) patient-derived organoid models that preserve heterogeneity of the originating tumor, including an amphicrine model displaying a range of luminal and NE phenotypes.

View Article and Find Full Text PDF

Patients diagnosed with localized high-risk prostate cancer have higher rates of recurrence, and the introduction of neoadjuvant intensive hormonal therapies seeks to treat occult micrometastatic disease by their addition to definitive treatment. Sufficient profiling of baseline disease has remained a challenge in enabling the in-depth assessment of phenotypes associated with exceptional vs. poor pathologic responses after treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Sjögren's Disease (SjD) is an autoimmune disorder affecting salivary glands, but the cause and effective treatments are still unclear.
  • Researchers used advanced techniques like single-cell and spatial transcriptomics to analyze both healthy and diseased salivary glands, revealing key differences in cellular composition.
  • The study found that specific immune cells, particularly +CD8 T cells, are involved in damaging secretory cell types in SjD, highlighting the complex immune interactions that contribute to the disease's progression.
View Article and Find Full Text PDF

The CD8 T-cell response is prognostic for survival outcomes in several tumor types. However, whether this extends to tumors in the brain, an organ with barriers to T cell entry, remains unclear. Here, we analyzed immune infiltration in 67 brain metastasis (BrM) and found high frequencies of PD1 TCF1 stem-like CD8 T-cells and TCF1 effector-like cells.

View Article and Find Full Text PDF

Purpose: Checkpoint therapy is now the cornerstone of treatment for patients with renal cell carcinoma (RCC) with advanced disease, but biomarkers are lacking to predict which patients will benefit. This study proposes potential immunological biomarkers that could developed for predicting therapeutic response in patients with RCC.

Methods: Using flow cytometry, RNA sequencing, and T-cell receptor (TCR) sequencing, we investigated changes in T cells in the peripheral blood of patients with advanced RCC after receiving immunotherapy.

View Article and Find Full Text PDF

Purpose: A subset of primary prostate cancer expresses programmed death-ligand 1 (PD-L1), but whether they have a unique tumor immune microenvironment or genomic features is unclear.

Experimental Design: We selected PD-L1-positive high-grade and/or high-risk primary prostate cancer, characterized tumor-infiltrating lymphocytes with multiplex immunofluorescence, and identified genomic alterations in immunogenic and nonimmunogenic tumor foci.

Results: One quarter of aggressive localized prostate cancer cases (29/115) had tumor PD-L1 expression more than 5%.

View Article and Find Full Text PDF

Tumor necrosis happens commonly in advanced solid tumors. We reported that necroptosis plays a major role in tumor necrosis. Although several key necroptosis regulators including receptor interacting protein kinase 1 (RIPK1) have been identified, the regulation of tumor necroptosis during tumor development remains elusive.

View Article and Find Full Text PDF

In addition to its role as an auxiliary subunit of A-type voltage-gated K channels, we have previously reported that the single transmembrane protein Dipeptidyl Peptidase Like 6 (DPP6) impacts neuronal and synaptic development. DPP6-KO mice are impaired in hippocampal-dependent learning and memory and exhibit smaller brain size. Using immunofluorescence and electron microscopy, we report here a novel structure in hippocampal area CA1 that was significantly more prevalent in aging DPP6-KO mice compared to WT mice of the same age and that these structures were observed earlier in development in DPP6-KO mice.

View Article and Find Full Text PDF

Localized prostate cancer develops very slowly in most men, with the androgen receptor (AR) and MYC transcription factors amongst the most well-characterized drivers of prostate tumorigenesis. Canonically, MYC up-regulation in luminal prostate cancer cells functions to oppose the terminally differentiating effects of AR. However, the effects of MYC up-regulation are pleiotropic and inconsistent with a poorly proliferative phenotype.

View Article and Find Full Text PDF

Localized prostate cancers are genetically variable and frequently multifocal, comprising spatially distinct regions with multiple independently-evolving clones. To date there is no understanding of whether this variability can influence management decisions for patients with prostate tumors. Here, we present a single case from a clinical trial of neoadjuvant intense androgen deprivation therapy.

View Article and Find Full Text PDF

Tumour-infiltrating lymphocytes are associated with a survival benefit in several tumour types and with the response to immunotherapy. However, the reason some tumours have high CD8 T cell infiltration while others do not remains unclear. Here we investigate the requirements for maintaining a CD8 T cell response against human cancer.

View Article and Find Full Text PDF

Purpose: Despite decreased screening-based detection of clinically insignificant tumors, most diagnosed prostate cancers are still indolent, indicating a need for better strategies for detection of clinically significant disease before treatment. We hypothesized that patients with detectable circulating tumor DNA (ctDNA) were more likely to harbor aggressive disease.

Methods: We applied ultra-low-pass whole-genome sequencing to profile cell-free DNA from 112 patients diagnosed with localized prostate cancer and performed targeted resequencing of plasma DNA for somatic mutations previously identified in matched solid tumor in nine cases.

View Article and Find Full Text PDF

Early growth response-1 (EGR1) is a transcription factor correlated with prostate cancer (PC) progression in a variety of contexts. For example, EGR1 levels increase in response to suppressed androgen receptor signaling or loss of the tumor suppressor, PTEN. EGR1 has been shown to regulate genes influencing proliferation, apoptosis, immune cell activation, and matrix degradation, among others.

View Article and Find Full Text PDF

The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25-30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers.

View Article and Find Full Text PDF
Article Synopsis
  • - Tumor cells activate platelets, leading to the release of molecules that help cancer spread (metastasis), but the specific interactions between platelets and tumors are not well understood.
  • - A key discovery is that tumor CD97, a receptor found in various cancers, directly interacts with platelets, promoting signal exchanges that enhance platelet activation and secretion of important substances.
  • - The study suggests that blocking CD97 could be a therapeutic strategy to reduce tumor invasiveness and metastasis by disrupting the connection between tumors and platelets.
View Article and Find Full Text PDF

One of the hallmarks of the malignant transformation of epithelial tissue is the modulation of stromal components of the microenvironment. In particular, aberrant extracellular matrix (ECM) remodeling and stiffening enhances tumor growth and survival and promotes metastasis. Type I collagen is one of the major ECM components.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is one of the most aggressive human malignancies, with no effective treatment currently available. Previously, we identified agents active against ATC cells, both in vitro and in vivo, using quantitative high-throughput screening of 3282 clinically approved drugs and small molecules. Here, we report that combining two of these active agents, carfilzomib, a second-generation proteasome inhibitor, and CUDC-101, a histone deacetylase and multi-kinase inhibitor, results in increased, synergistic activity in ATC cells.

View Article and Find Full Text PDF

Primary prostate cancer almost always has a luminal phenotype. However, little is known about the stem/progenitor properties of transformed cells within tumors. Using the aggressive Pten/Tp53-null mouse model of prostate cancer, we show that two classes of luminal progenitors exist within a tumor.

View Article and Find Full Text PDF

The recurrence of prostate cancer metastases to bone after androgen deprivation therapy is a major clinical challenge. We identified FN14 (TNFRSF12A), a TNF receptor family member, as a factor that promotes prostate cancer bone metastasis. In experimental models, depletion of FN14 inhibited bone metastasis, and FN14 could be functionally reconstituted with IKKβ-dependent, NFκB signaling activation.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic rearrangements, like the TMPRSS2-ERG fusion, play a key role in the initiation and progression of prostate cancer, and an in vivo mouse model was developed to study this specific rearrangement.
  • The model showed that TMPRSS2-ERG was expressed not only in luminal cells but also in basal/progenitor cells, leading to an increase in self-renewing progenitor cells, indicating potential targets for further mutations in cancer.
  • TMPRSS2-ERG expression was found in both castration-sensitive and resistant prostate epithelial cells, highlighting potential mechanisms for its activity that are independent of androgen levels.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond8lagljssrgt6k0f7auqk23mgs9so5gh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once