Publications by authors named "Ross Jakes"

In 2017, it is two hundred years since James Parkinson provided the first complete clinical description of the disease named after him, fifty years since the introduction of high-dose D,L-DOPA treatment and twenty years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson's disease and dementia with Lewy bodies as the third major synucleinopathy. Here we review our work, which led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies, as well as what has happened since.

View Article and Find Full Text PDF

Filamentous inclusions made of α-synuclein are found in nerve cells and glial cells in a number of human neurodegenerative diseases, including Parkinson disease, dementia with Lewy bodies, and multiple system atrophy. The assembly and spreading of these inclusions are likely to play an important role in the etiology of common dementias and movement disorders. Both α-synuclein and the homologous β-synuclein are abundantly expressed in the central nervous system; however, β-synuclein is not present in the pathological inclusions.

View Article and Find Full Text PDF

Lewy bodies (LBs) appear in the brains of nondemented individuals and also occur in a range of neurodegenerative disorders, such as dementia with Lewy bodies (DLB) and Parkinson's disease. A number of people with a definite diagnosis of Alzheimer's disease (AD) also exhibit these intraneuronal inclusions in allo- and/or neocortical areas. The latter, referred to as Lewy body variant of AD (LBV), bears a clinical resemblance to AD in terms of age at onset, duration of illness, cognitive impairment, and illness severity.

View Article and Find Full Text PDF

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the presence of filamentous inclusions in nerve cells. These filaments are amyloid fibrils that are made of the protein alpha-synuclein, which is genetically linked to rare cases of PD and DLB. beta-Synuclein, which shares 60% identity with alpha-synuclein, is not found in the inclusions.

View Article and Find Full Text PDF

In humans, three genes encode the related alpha-, beta-, and gamma-synucleins, which function as lipid-binding proteins in vitro. They are being widely studied, mainly because of the central involvement of alpha-synuclein in a number of neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In these diseases, the normally soluble alpha-synuclein assembles into abnormal filaments.

View Article and Find Full Text PDF

Phosphorylation regulates both normal and pathological Tau functioning. This microtubule-associated protein plays a role in the organization and integrity of the neuronal cytoskeleton under normal conditions and becomes hyperphosphorylated and aggregated in a number of neurodegenerative diseases referred to as tauopathies. In this study, we identify and compare the residues in human Tau phosphorylated in vitro by all four p38 MAPK isoforms, and study the regulation of the phosphorylation of Thr50, under conditions where p38 MAPKs are active in cells.

View Article and Find Full Text PDF

Tau is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases. They include the largely sporadic Alzheimer's disease (AD), progressive supranuclear palsy, corticobasal degeneration, Pick's disease and argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). For a long time, it was unclear whether the dysfunction of tau protein follows disease or whether disease follows tau dysfunction.

View Article and Find Full Text PDF

Missense mutations (A30P and A53T) in alpha-synuclein and the overproduction of the wild-type protein cause familial forms of Parkinson's disease and dementia with Lewy bodies. Alpha-synuclein is the major component of the filamentous Lewy bodies and Lewy neurites that define these diseases at a neuropathological level. Recently, a third missense mutation (E46K) in alpha-synuclein was described in an inherited form of dementia with Lewy bodies.

View Article and Find Full Text PDF

Filamentous tau deposits are a defining feature of a number of human neurodegenerative diseases. Apes and monkeys have been reported to be differentially susceptible to developing tau pathology. Despite this, only little is known about the organisation and sequence of Tau from nonhuman primates.

View Article and Find Full Text PDF

The clinical and neuropathological characteristics of an atypical form of dementia with Lewy bodies (DLB) are described. The proband experienced difficulties in her school performance at 13 years of age. Neurological examination revealed cognitive dysfunction, dysarthria, parkinsonism and myoclonus.

View Article and Find Full Text PDF

The identification of mutations in the Tau gene in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has made it possible to express human tau protein with pathogenic mutations in transgenic animals. Here we report on the production and characterization of a line of mice transgenic for the 383 aa isoform of human tau with the P301S mutation. At 5-6 months of age, homozygous animals from this line developed a neurological phenotype dominated by a severe paraparesis.

View Article and Find Full Text PDF

The pathological hallmark of Parkinson's disease is the presence of intracellular inclusions, Lewy bodies, and Lewy neurites, in the dopaminergic neurons of the substantia nigra and several other brain regions. Filamentous alpha-synuclein is the major component of these deposits and its aggregation is believed to play an important role in Parkinson's disease and several other neurodegenerative diseases. Two homologous proteins, beta- and gamma-synucleins, are also abundant in the brain.

View Article and Find Full Text PDF

The casein milk proteins and the brain proteins alpha-synuclein and tau have been described as natively unfolded with random coil structures, which, in the case of alpha-synuclein and tau, have a propensity to form the fibrils found in a number of neurodegenerative diseases. New insight into the structures of these proteins has been provided by a Raman optical activity study, supplemented with differential scanning calorimetry, of bovine beta- and kappa-casein, recombinant human alpha-, beta- and gamma-synuclein, together with the A30P and A53T mutants of alpha-synuclein associated with familial cases of Parkinson's disease, and recombinant human tau 46 together with the tau 46 P301L mutant associated with inherited frontotemporal dementia. The Raman optical activity spectra of all these proteins are very similar, being dominated by a strong positive band centred at approximately 1318 cm(-1) that may be due to the poly(l-proline) II (PPII) helical conformation.

View Article and Find Full Text PDF

tau gene mutations cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Here we have used Xenopus oocyte maturation as an indicator of microtubule function. We show that wild-type four-repeat Tau protein inhibits maturation in a concentration-dependent manner, whereas three-repeat Tau has no effect.

View Article and Find Full Text PDF