Because defects are ubiquitous in materials, they may play an important role in affecting the performance of materials in practical applications. Here, we investigate the influence of point defects on the diffusion of molecules including water, hydrocarbons, and acid gases in zeolitic imidazolate framework-8 (ZIF-8) using molecular simulations. To make these simulations possible, we introduce a force field that extends previous descriptions of pristine ZIF-8 to include experimentally relevant point defects.
View Article and Find Full Text PDFAlthough computational models have been used to predict adsorption of molecules in large libraries of porous adsorbents, previous work of this kind has focused on a small number of molecules as potential adsorbates. In this study, molecular simulations were used to consider the adsorption of a diverse range of molecules in a large collection of metal-organic framework (MOF) materials. Specifically, 11 304 isotherms were obtained from molecular simulations of 24 different adsorbates in 471 MOFs.
View Article and Find Full Text PDFThe rates of adsorbate diffusion in zeolitic imidazolate frameworks (ZIFs) can be varied by several orders of magnitude by incorporating two different imidazolate linkers in the ZIF crystals. Although some prior measurements of short-range order in these mixed-linker materials have been reported, it is unclear how this short-range order impacts the net diffusion of adsorbates. We introduce a lattice diffusion model that treats diffusion in ZIF-8-90 crystals as a series of activated hops between cages, allowing us to assess the effects of short-range imidazolate order on molecular diffusion.
View Article and Find Full Text PDFMixed-linker zeolitic imidazolate frameworks (ZIFs) are nanoporous materials that exhibit continuous and controllable tunability of properties like effective pore size, hydrophobicity, and organophilicity. The structure of mixed-linker ZIFs has been studied on macroscopic scales using gravimetric and spectroscopic techniques. However, it has so far not been possible to obtain information on unit-cell-level linker distribution, an understanding of which is key to predicting and controlling their adsorption and diffusion properties.
View Article and Find Full Text PDFAccurate and efficient predictions of hydrocarbon diffusivities in zeolitic imidazolate frameworks (ZIFs) are challenging, due to the small pore size of materials such as ZIF-8 and the wide range of diffusion time scales of hydrocarbon molecules in ZIFs. Here we have computationally measured the hopping rates of 15 different molecules (kinetic diameters of 2.66-5.
View Article and Find Full Text PDF