Publications by authors named "Ross Hill"

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed.

View Article and Find Full Text PDF

DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes.

View Article and Find Full Text PDF

Climate change is predicted to cause widespread disruptions to global biodiversity. Most climate models are at the macroscale, operating at a ~ 1 km resolution and predicting future temperatures at 1.5-2 m above ground level, making them unable to predict microclimates at the scale that many organisms experience temperature.

View Article and Find Full Text PDF

Natural succession of vegetation on abandoned farmland provides opportunities for passive rewilding to re-establish native woodlands, but in Western Europe the patterns and outcomes of vegetation colonisation are poorly known. We combine time series of field surveys and remote sensing (lidar and photogrammetry) to study woodland development on two farmland fields in England over 24 and 59 years respectively: the New Wilderness (2.1 ha) abandoned in 1996, and the Old Wilderness (3.

View Article and Find Full Text PDF

Ocean warming is causing the symbioses between cnidarians and their algal symbionts to breakdown more frequently, resulting in bleaching. For sea anemones, nutritional benefits derived from hosting anemonefishes increase their algal symbiont density. The sea anemone-anemonefish relationship could, therefore, facilitate bleaching recovery.

View Article and Find Full Text PDF

Sleeping tree selection and related behaviours of a family group and a solitary female siamang (Symphalangus syndactylus) were investigated over a 5-month period in northern Sumatra, Indonesia. We performed all day follows, sleeping tree surveys and forest plot enumerations in the field. We tested whether: (1) physical characteristics of sleeping trees and the surrounding trees, together with siamang behaviours, supported selection based on predation risk and access requirements; (2) the preferences of a solitary siamang were similar to those of a family group; and (3) sleeping site locations within home ranges were indicative of home range defence, scramble competition with other groups or other species, or food requirements.

View Article and Find Full Text PDF

Germline de novo mutations are the basis of evolutionary diversity but also of genetic disease. However, the molecular origin, mechanisms and timing of germline mutagenesis are not fully understood. Here, we define a fundamental role for DNA interstrand cross-link repair in the germline.

View Article and Find Full Text PDF

StAR-related lipid transfer (START) domains are phospholipid- or sterol-binding modules that are present in many proteins. START domain-containing proteins (START proteins) play important functions in eukaryotic cells, including the redistribution of phospholipids to subcellular compartments and delivering sterols to the mitochondrion for steroid synthesis. How the activity of the START domain is regulated remains unknown for most of these proteins.

View Article and Find Full Text PDF

Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health.

View Article and Find Full Text PDF

Large-scale climate processes influence many aspects of ecology including breeding phenology, reproductive success and survival across a wide range of taxa. Some effects are direct, for example, in temperate-zone birds, ambient temperature is an important cue enabling breeding effort to coincide with maximum food availability, and earlier breeding in response to warmer springs has been documented in many species. In other cases, time-lags of up to several years in ecological responses have been reported, with effects mediated through biotic mechanisms such as growth rates or abundance of food supplies.

View Article and Find Full Text PDF

The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI).

View Article and Find Full Text PDF

Diatoms, an important group of phytoplankton, bloom annually in the Southern Ocean, covering thousands of square kilometers and dominating the region's phytoplankton communities. In their role as the major food source to marine grazers, diatoms supply carbon, nutrients and energy to the Southern Ocean food web. Prevailing environmental conditions influence diatom phenotypic traits (for example, photophysiology, macromolecular composition and morphology), which in turn affect the transfer of energy, carbon and nutrients to grazers and higher trophic levels, as well as oceanic biogeochemical cycles.

View Article and Find Full Text PDF

Dinoflagellates from the genus Symbiodinium form symbiotic relationships with many marine invertebrates, including reef-building corals. Symbiodinium is genetically diverse, and acquiring suitable Symbiodinium phylotypes is crucial for the host to survive in habitat environments, such as high-light conditions. The sensitivity of Symbiodinium to high light differs among Symbiodinium phylotypes, but the mechanism that controls light sensitivity has not yet been fully resolved.

View Article and Find Full Text PDF

The light dependency of respiratory activity of two scleractinian corals was examined using O2 microsensors and CO2 exchange measurements. Light respiration increased strongly but asymptotically with elevated irradiance in both species. Light respiration in Pocillopora damicornis was higher than in Pavona decussata under low irradiance, indicating species-specific differences in light-dependent metabolic processes.

View Article and Find Full Text PDF

A relationship exists between the two-dimensional shape of leaves and their venation architecture, such that broad or broad-lobed leaves can have leaf tissue far from major veins, potentially creating stronger gradients in water potential - and associated photosynthetic function - than found across narrow counterparts. We examined the spatial patterns of photosynthetic efficiency (ΔF/Fm') and non-photochemical quenching (NPQ) in response to increased vapour pressure deficit (VPD) using two morphs of Lomatia tinctoria (Labill.) R.

View Article and Find Full Text PDF

Two inhibitors of the Calvin-Benson cycle [glycolaldehyde (GA) and potassium cyanide (KCN)] were used in cultured Symbiodinium cells and in nubbins of the coral Pocillopora damicornis to test the hypothesis that inhibition of the Calvin-Benson cycle triggers coral bleaching. Inhibitor concentration range-finding trials aimed to determine the appropriate concentration to generate inhibition of the Calvin-Benson cycle, but avoid other metabolic impacts to the symbiont and the animal host. Both 3 mmol l(-1) GA and 20 μmol l(-1) KCN caused minimal inhibition of host respiration, but did induce photosynthetic impairment, measured by a loss of photosystem II function and oxygen production.

View Article and Find Full Text PDF

Diatoms are the primary source of nutrition and energy for the Southern Ocean ecosystem. Microalgae, including diatoms, synthesise biological macromolecules such as lipids, proteins and carbohydrates for growth, reproduction and acclimation to prevailing environmental conditions. Here we show that three key species of Southern Ocean diatom (Fragilariopsis cylindrus, Chaetoceros simplex and Pseudo-nitzschia subcurvata) exhibited phenotypic plasticity in response to salinity and temperature regimes experienced during the seasonal formation and decay of sea ice.

View Article and Find Full Text PDF

Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics.

View Article and Find Full Text PDF

Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z.

View Article and Find Full Text PDF

A novel ultraviolet (UV)-assisted imprinting procedure that employs photosensitive tin(II) 2-ethylhexanoate is presented for the facile size-tunable fabrication of functional tin dioxide (SnO(2)) nanostructures by varying annealing temperatures. These imprinted SnO(2) nanostructures were also used as new masters for size reduction lithography. SnO(2) lines down to 40 nm wide were obtained from a silicon master with 200 nm wide lines by simply performing size reduction lithography twice.

View Article and Find Full Text PDF

We present a simple size reduction technique for fabricating 400 nm zinc oxide (ZnO) architectures using a silicon master containing only microscale architectures. In this approach, the overall fabrication, from the master to the molds and the final ZnO architectures, features cost-effective UV photolithography, instead of electron beam lithography or deep-UV photolithography. A photosensitive Zn-containing sol-gel precursor was used to imprint architectures by direct UV-assisted nanoimprint lithography (UV-NIL).

View Article and Find Full Text PDF

Exposure to elevated temperature is known to cause photosynthetic inhibition in the coral symbiont Symbiodinium sp. Through the use of the artificial electron acceptor, methyl viologen, this study identified how reduced photosynthetic capacity occurs as a result of inhibition up- and/or downstream of ferredoxin in Symbiodinium sp. in hospite and in culture.

View Article and Find Full Text PDF