Publications by authors named "Ross Hartman"

We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions.

View Article and Find Full Text PDF

Sulfolobus turreted icosahedral virus (STIV) is a model archaeal virus and member of the PRD1-adenovirus lineage. Although STIV employs pyramidal lysis structures to exit the host, knowledge of the viral entry process is lacking. We therefore initiated studies on STIV attachment and entry.

View Article and Find Full Text PDF

Archaeal viruses exhibit diverse morphologies whose structures are just beginning to be explored at high-resolution. In this review, we update recent findings on archaeal structural proteins and virion architectures and place them in the biological context in which these viruses replicate. We conclude that many of the unusual structural features and dynamics of archaeal viruses aid their replication and survival in the chemically harsh environments, in which they replicate.

View Article and Find Full Text PDF

TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP-TFB-RNAP pre-initiation complex and inhibits transcription initiation and elongation.

View Article and Find Full Text PDF

Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building.

View Article and Find Full Text PDF