J Colloid Interface Sci
December 2021
Hypothesis: The air-solution interface of supersaturated calcium hydrogen carbonate (Ca(HCO)) represents the highest saturation state due to evaporation/CO-degassing, where calcite crystals are expected to nucleate and grow along the interface. Hence, it should be possible to form a free-standing mineral-only calcium carbonate (CaCO) microfilm at the air-solution interface of Ca(HCO). The air-solution interface of phosphate buffered saline (PBS) could represent a phase boundary to introduce a hybrid microstructure of CaCO and carbonate-rich dicalcium hydroxide phosphate (carbonate-rich hydroxylapatite).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2013
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2012
In this paper, we report on many phosphate containing natural minerals found in the Jenolan Caves - Australia. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the montgomeryite mineral [Ca(4)MgAl(4)(PO(4))(6)·(OH)(4)·12H(2)O].
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2012
Arsenogorceixite BaAl(3)AsO(3)(OH)(AsO(4),PO(4))(OH,F)(6) belongs to the crandallite mineral subgroup of the alunite supergroup. Arsenogorceixite forms a continuous series of solid solutions with related minerals including gorceixite, goyazite, arsenogoyazite, plumbogummite and philipsbornite. Two minerals from (a) Germany and (b) from Ashburton Downs, Australia were analysed by Raman spectroscopy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2011
In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH(4))Na(PO(4))·4H(2)O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2011
Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH(4))Al(3)(PO(4))(3)(OH)·9(H(2)O) which has been identified by X-ray diffraction.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2011
Newberyite Mg(PO3OH)·3H2O is a mineral found in caves such as from Moorba Cave, Jurien Bay, Western Australia, the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of 'cave' minerals.
View Article and Find Full Text PDF