Publications by authors named "Ross De Burgh"

Psychological stress is linked to infertility by suppressing the hypothalamic GnRH pulse generator. The posterodorsal subnucleus of the medial amygdala (MePD) is an upstream regulator of GnRH pulse generator activity and displays increased neuronal activation during psychological stress. The MePD is primarily a GABAergic nucleus with a strong GABAergic projection to hypothalamic reproductive centers; however, their functional significance has not been determined.

View Article and Find Full Text PDF
Article Synopsis
  • Kisspeptin neurons in the arcuate nucleus of the hypothalamus are crucial for triggering gonadotrophin-releasing hormone (GnRH) pulses, which are essential for reproductive function.
  • Research indicates that kisspeptin in the medial amygdala (MePD) modulates this process, with optogenetics showing that stimulating MePD kisspeptin increases luteinizing hormone pulse frequency.
  • The study combines optogenetic stimulation and pharmacological antagonism to explore the neurotransmission pathways, revealing that both GABA and glutamate are vital for the modulation of GnRH pulses by amygdala kisspeptin neurons.
View Article and Find Full Text PDF

There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology.

View Article and Find Full Text PDF

Pulsatile GnRH release is essential for normal reproductive function. Kisspeptin secreting neurons found in the arcuate nucleus, known as KNDy neurons for co-expressing neurokinin B, and dynorphin, drive pulsatile GnRH release. Furthermore, gonadal steroids regulate GnRH pulsatile dynamics across the ovarian cycle by altering KNDy neurons' signalling properties.

View Article and Find Full Text PDF

Kisspeptin within the arcuate nucleus of the hypothalamus is a critical neuropeptide in the regulation of reproduction. Together with neurokinin B and dynorphin A, arcuate kisspeptin provides the oscillatory activity that drives the pulsatile secretion of gonadotrophin-releasing hormone (GnRH), and therefore luteinising hormone (LH) pulses, and is considered to be a central component of the GnRH pulse generator. It is well established that the amygdala also exerts an influence over gonadotrophic hormone secretion and reproductive physiology.

View Article and Find Full Text PDF

Fertility critically depends on the gonadotropin-releasing hormone (GnRH) pulse generator, a neural construct comprised of hypothalamic neurons coexpressing kisspeptin, neurokoinin-B and dynorphin. Here, using mathematical modeling and optogenetics we reveal for the first time how this neural construct initiates and sustains the appropriate ultradian frequency essential for reproduction. Prompted by mathematical modeling, we show experimentally using female estrous mice that robust pulsatile release of luteinizing hormone, a proxy for GnRH, emerges abruptly as we increase the basal activity of the neuronal network using continuous low-frequency optogenetic stimulation.

View Article and Find Full Text PDF