We consider the design of optical systems capable of providing near 100% absorption of visible light, consisting of a structured thin layer of a weakly absorbing semiconductor placed on top of a dielectric spacer layer and a metallic mirror layer. We generalise a system recently studied semi-analytically and experimentally by Stürmberg et al [Optica 3, 556 2016] which incorporated a grating layer of antimony sulphide and delivered high, narrow-band absorptance of normally-incident light for a single polarisation. We demonstrate that bi-periodic gratings can be optimised to deliver near-perfect absorptance of unpolarised light in the system, and comment on the wavelength and angular ranges over which the absorptance remains near 100%.
View Article and Find Full Text PDFThe guided mode resonances (GMRs) of diffraction gratings surrounded by low index materials can be designed to produce broadband regions of near perfect reflection and near perfect transmission. These have many applications, including in optical isolators, in hybrid lasers cavities and in photovoltaics. The excitation of rapid GMRs occurs in a background of slowly varying Fabry-Perot oscillation, which produces Fano resonances.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2014
The construction of Green's tensor for two-dimensional gyrotropic photonic clusters composed of cylinders with circular cross sections using the semi-analytic multipole method is presented. The high efficiency and accuracy of the method is demonstrated. The developed method is applied to gyrotropic clusters that support topological chiral Hall edge states.
View Article and Find Full Text PDFWe investigate the optical properties of silicon nanohole arrays for application in photovoltaic cells in terms of the modes within the structure. We highlight three types of modes: fundamental modes, important at long wavelengths; guided resonance modes, which enhance absorption for wavelengths where the intrinsic absorption of silicon is low; and channeling modes, which suppress front-surface reflection. We use this understanding to explain why the parameters of optimized nanohole arrays occur in specific ranges even as the thickness is varied.
View Article and Find Full Text PDFWe investigate the twofold functionality of a cylindrical shell consisting of a negatively refracting heterogeneous bianisotropic (NRHB) medium deduced from geometric transforms. The numerical simulations indicate that the shell enhances their scattering by a perfect electric conducting (PEC) core, whereas it considerably reduces the scattering of electromagnetic waves by closely located objects when the shell surrounds a bianisotropic core. The former can be attributed to a homeopathic effect, whereby a small PEC object scatters like a large one as confirmed by numerics, while the latter can be attributed to space cancellation of complementary bianisotropic media underpinning anomalous resonances counteracting the field emitted by small objects (external cloaking).
View Article and Find Full Text PDFAperiodic Nanowire (NW) arrays have higher absorption than equivalent periodic arrays, making them of interest for photovoltaic applications. An inevitable property of aperiodic arrays is the clustering of some NWs into closer proximity than in the equivalent periodic array. We focus on the modes of such clusters and show that the reduced symmetry associated with cluster formation allows external coupling into modes which are dark in periodic arrays, thus increasing absorption.
View Article and Find Full Text PDFThe quasistatic field around a circular hole in a two-dimensional hyperbolic medium is studied. As the loss parameter goes to zero, it is found that the electric field diverges along four lines each tangent to the hole. In this limit, the power dissipated by the field in the vicinity of these lines, per unit length of the line, goes to zero but extends further and further out so that the net power dissipated remains finite.
View Article and Find Full Text PDFThe successful fabrication and experimental verification of a novel metamaterial based on flexible metallic helices is reported. The helices undergo compression under the influence of incident radiation, demonstrating a nonlinear chiral electromagnetic response, associated with the power-dependent change in the helix pitch. This design is promising for application to power-dependent polarization rotation of propagating waves.
View Article and Find Full Text PDFWe present a first-principles method to compute radiation properties of ultra-high quality factor photonic crystal cavities. Our Frequency-domain Approach for Radiation (FAR) can compute the far-field radiation pattern and quality factor of cavity modes ~ 100 times more rapidly than conventional finite-difference time domain calculations. We explain how the radiation pattern depends on the perturbation used to create the cavity and on the Bloch modes of the photonic crystal.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
May 2012
A finite element-based modal formulation of diffraction of a plane wave by an absorbing photonic crystal slab of arbitrary geometry is developed for photovoltaic applications. The semianalytic approach allows efficient and accurate calculation of the absorption of an array with a complex unit cell. This approach gives direct physical insight into the absorption mechanism in such structures, which can be used to enhance the absorption.
View Article and Find Full Text PDFWe analyze the absorption of solar radiation by silicon nanowire arrays, which are being considered for photovoltaic applications. These structures have been shown to have enhanced absorption compared with thin films, however the mechanism responsible for this is not understood. Using a new, semi-analytic model, we show that the enhanced absorption can be attributed to a few modes of the array, which couple well to incident light, overlap well with the nanowires, and exhibit strong Fabry-Pérot resonances.
View Article and Find Full Text PDFWe investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate.
View Article and Find Full Text PDFWe demonstrate postprocessed microfluidic double-heterostructure cavities in silicon-based photonic crystal slab waveguides. The cavity structure is realized by selective fluid infiltration of air holes using a glass microtip, resulting in a local change of the average refractive index of the photonic crystal. The microcavities are probed by evanescent coupling from a silica nanowire.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2008
We consider lamellar gratings made of dielectric or lossy materials used in classical diffraction mounts. We show how the modal diffraction formulation may be generalized to deal with slanted lamellar gratings and illustrate the accuracy and versatility of the new method through study of highly slanted gratings in a homogenization limit. We also comment on the completeness of the eigenmode basis and present tests enabling this completeness to be verified numerically.
View Article and Find Full Text PDFWe demonstrate the spectral and spatial reconfigurability of photonic crystal double-heterostructure cavities in silicon by microfluidic infiltration of selected air holes. The lengths of the microfluidic cavities are changed by adjusting the region of infiltrated holes in steps of several microns. We systematically investigate the spectral signature of these cavities, showing high Q-factor resonances for a broad range of cavity lengths.
View Article and Find Full Text PDFA biomolecular sensor consisting of a thin metallic grating deposited on a glass prism is studied in the formalism of poles and zeros of the scattering matrix. Surface plasmon resonance is used to increase the sensitivity of the device with respect to a variation of the refractive index of the substrate. It is shown that a direct coupling between counter propagating surface plasmons using double-harmonic Fourier gratings leads to an enhancement of the sensitivity.
View Article and Find Full Text PDFWe study wave propagation in mixed, 1D disordered stacks of alternating right- and left-handed layers and reveal that the introduction of metamaterials substantially suppresses Anderson localization. At long wavelengths, the localization length in mixed stacks is orders of magnitude larger than for normal structures, proportional to the sixth power of the wavelength, in contrast to the usual quadratic wavelength dependence of normal systems. Suppression of localization is also exemplified in long-wavelength resonances which largely disappear when left-handed materials are introduced.
View Article and Find Full Text PDFWe analyze the nature of modal cutoff in microstructured optical fibers of finite cross section. In doing so, we reconcile the striking endlessly single-mode behavior with the fact that in such fibers all propagation constants are complex. We show that the second mode undergoes a strong change of behavior that is reflected in the losses, effective area, and multipolar structure.
View Article and Find Full Text PDFA sinusoidal silver grating is used to create a six-fold enhancement of the SPR response compared to a flat surface. The grating parameters are chosen to create a surface plasmon bandgap and it is shown that the enhancement of the sensitivity to bulk sample index occurs when operating near the bandgap. The Kretschmann configuration is considered and the Boundary Element Method is used to generate the dispersion curves.
View Article and Find Full Text PDFPhotonic crystal fibers (PCF) containing coated holes have recently been demonstrated experimentally, but haven't been studied theoretically and numerically thus far. We extend the multipole formalism to take into account coated cylinders, and demonstrate its accuracy even with metallic coatings. We provide numerical tables for calibration of other numerical methods.
View Article and Find Full Text PDFWe report detailed measurements of the optical properties of tapered photonic crystal fibers (PCFs). We observe a striking long-wavelength loss as the fiber diameter is reduced, despite the minimal airhole collapse along the taper. We associate this loss with a transition of the fundamental core mode as the fiber dimensions contract: At wavelengths shorter than this transition wavelength, the core mode is strongly confined in the fiber microstructure, whereas at longer wavelengths the mode expands beyond the microstructure and couples out to higher-order modes.
View Article and Find Full Text PDFWe propose a simple physical model that predicts the optical properties of a class of microstructured waveguides consisting of high-index inclusions that surround a low-index core. On the basis of this model, it is found that a large regime exists where transmission minima are determined by the geometry of the individual high-index inclusions. The locations of these minima are found to be largely unaffected by the relative position of the inclusions.
View Article and Find Full Text PDF