Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene.
View Article and Find Full Text PDFVesicular transport is a complex multistep process regulated by distinct Rab GTPases. Here, we show for the first time that an EGFP-Rab fusion protein is fully functional in a mammalian organism. We constructed a PAC-based transgenic mouse, which expresses EGFP-Rab27a under the control of endogenous Rab27a promoter.
View Article and Find Full Text PDFBackground: Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic.
View Article and Find Full Text PDFGriscelli syndrome (GS) patients and the corresponding mouse model ashen exhibit defects mainly in two types of lysosome-related organelles, melanosomes in melanocytes and lytic granules in CTLs. This disease is caused by loss-of-function mutations in RAB27A, which encodes 1 of the 60 known Rab GTPases, critical regulators of vesicular transport. Here we present evidence that Rab27a function can be compensated by a closely related protein, Rab27b.
View Article and Find Full Text PDF