The 2019-20 wildfires in eastern Australia presented a globally important opportunity to evaluate the respective roles of climatic drivers and natural and anthropogenic disturbances in causing high-severity fires. Here, we show the overwhelming dominance of fire weather in causing complete scorch or consumption of forest canopies in natural and plantation forests in three regions across the geographic range of these fires. Sampling 32% (2.
View Article and Find Full Text PDFSpotting is thought to increase wildfire rate of spread (ROS) and in some cases become the main mechanism for spread. The role of spotting in wildfire spread is controlled by many factors including fire intensity, number of and distance between spot fires, weather, fuel characteristics and topography. Through a set of 30 laboratory fire experiments on a 3 m x 4 m fuel bed, subject to air flow, we explored the influence of manually ignited spot fires (0, 1 or 2), the presence or absence of a model hill and their interaction on combined fire ROS (i.
View Article and Find Full Text PDFOver the Austral spring and summer of 2019/20 > 7 million ha of Eucalyptus forest and woodland, including some of Australia's most carbon dense ecosystems, were burnt on the east coast of Australia. We estimated bootstrapped mean CO emissions of c. 0.
View Article and Find Full Text PDFConsiderable investments are made in managing fire risk to human assets, including a growing use of fire behaviour simulation tools to allocate expenditure. Understanding fire risk requires estimation of the likelihood of ignition, spread of the fire and impact on assets. The ability to estimate and predict risk requires both the development of ignition likelihood models and the evaluation of these models in novel environments.
View Article and Find Full Text PDFThe storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO ]. Temperate forests represent significant above-ground carbon (AGC) "sinks" because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above-ground biomass releasing carbon to the atmosphere, and the long-term application of different fire-regimes select for specific plant communities that sequester carbon at different rates.
View Article and Find Full Text PDFRising atmospheric [CO ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO interactions.
View Article and Find Full Text PDFThe influence of plant traits on forest fire behaviour has evolutionary, ecological and management implications, but is poorly understood and frequently discounted. We use a process model to quantify that influence and provide validation in a diverse range of eucalypt forests burnt under varying conditions. Measured height of consumption was compared to heights predicted using a surface fuel fire behaviour model, then key aspects of our model were sequentially added to this with and without species-specific information.
View Article and Find Full Text PDFThe increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies.
View Article and Find Full Text PDFManagement strategies to reduce the risks to human life and property from wildfire commonly involve burning native vegetation. However, planned burning can conflict with other societal objectives such as human health and biodiversity conservation. These conflicts are likely to intensify as fire regimes change under future climates and as growing human populations encroach farther into fire-prone ecosystems.
View Article and Find Full Text PDFFollowing disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment.
View Article and Find Full Text PDFPredicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200-600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire).
View Article and Find Full Text PDFFire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system.
View Article and Find Full Text PDFThis study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount.
View Article and Find Full Text PDFTreatment of fuel (e.g. prescribed fire, logging) in fire-prone ecosystems is done to reduce risks to people and their property but effects require quantification, particularly under severe weather conditions when the destructive potential of fires on human infrastructure is maximised.
View Article and Find Full Text PDFLosses to life and property from unplanned fires (wildfires) are forecast to increase because of population growth in peri-urban areas and climate change. In response, there have been moves to increase fuel reduction--clearing, prescribed burning, biomass removal and grazing--to afford greater protection to peri-urban communities in fire-prone regions. But how effective are these measures? Severe wildfires in southern Australia in 2009 presented a rare opportunity to address this question empirically.
View Article and Find Full Text PDFEffective management of large protected conservation areas is challenged by political, institutional and environmental complexity and inconsistency. Knowledge generation and its uptake into management are crucial to address these challenges. We reflect on practice at the interface between science and management of the Greater Blue Mountains World Heritage Area (GBMWHA), which covers approximately 1 million hectares west of Sydney, Australia.
View Article and Find Full Text PDFTraits, such as resprouting, serotiny and germination by heat and smoke, are adaptive in fire-prone environments. However, plants are not adapted to fire per se but to fire regimes. Species can be threatened when humans alter the regime, often by increasing or decreasing fire frequency.
View Article and Find Full Text PDF