Publications by authors named "Rosmarie Michel-Schmidt"

The worldwide use of neonicotinoid pesticides has caused concern on account of their involvement in the decline of bee populations, which are key pollinators in most ecosystems. Here we describe a role of non-neuronal acetylcholine (ACh) for breeding of Apis mellifera carnica and a so far unknown effect of neonicotinoids on non-target insects. Royal jelly or larval food are produced by the hypopharyngeal gland of nursing bees and contain unusually high ACh concentrations (4-8 mM).

View Article and Find Full Text PDF

Non-neuronal acetylcholine mediates its cellular effects via stimulation of the G-protein-coupled muscarinic receptors and the ligand-gated ion channel nicotinic receptors. The murine embryonic stem cell line CGR8 synthesizes and releases non-neuronal acetylcholine. In the present study a systematic investigation of the expression of nicotinic receptor subunits and muscarinic receptors was performed, when the stem cells were grown in the presence or absence of LIF, as the latter condition induces early differentiation.

View Article and Find Full Text PDF

Acetylcholine is inactivated by acetylcholinesterase and butyrylcholinesterase and thereby its cellular signalling is stopped. One distinguishing difference between the neuronal and non-neuronal cholinergic system is the high expression level of the esterase activity within the former and a considerably lower level within the latter system. Thus, any situation which limits the activity of both esterases will affect the non-neuronal cholinergic system to a much greater extent than the neuronal one.

View Article and Find Full Text PDF

Acetylcholine (ACh) acts as a local cellular signaling molecule and is widely expressed in nature, including mammalian cells and embryonic stem cells. The murine embryonic stem cell line CGR8 synthesizes and releases substantial amounts of ACh. Particularly during early differentiation - a period associated with multiple alterations in geno-/phenotype functions - synthesis and release of ACh are increased by 10-fold.

View Article and Find Full Text PDF

Stem cells are used to generate differentiated somatic cells including neuronal cells. Synthesis and release of acetylcholine, a neurotransmitter and widely expressed signaling molecule, were investigated in the murine embryonic stem cell line CGR8 during early differentiation, i.e.

View Article and Find Full Text PDF

Aims: Acetylcholine is synthesized in more or less all mammalian cells. However, little is known about the subcellular location of acetylcholine synthesis. Therefore, in the present experiments the subcellular location of the synthesizing enzyme choline acetyltransferase (ChAT) was investigated by anti-ChAT immunogold electron microscopy in human placenta and airways as well as in a murine embryonic stem cell line (CGR8 cell line).

View Article and Find Full Text PDF

Aims: The non-neuronal cholinergic system is widely expressed in nature. The present experiments were performed to characterize the non-neuronal cholinergic system in murine embryonic stem cells (CGR8 cell line).

Main Methods: CGR8 cells were cultured in gelatinized flasks with Glasgow's buffered minimal essential medium (Gibco, Germany).

View Article and Find Full Text PDF