Publications by authors named "Roslyn M Theisen"

Considerable effort has been devoted to the development of first-row transition-metal catalysts containing redox-active imino-pyridine ligands that are capable of storing multiple reducing equivalents. This property allows abundant and inexpensive first-row transition metals, which favor sequential one-electron redox processes, to function as competent catalysts in the concerted two-electron reduction of substrates. Herein we report the syntheses and characterization of a series of iron complexes that contain both π-donating thiolate and π-accepting (α-imino)-N-heterocycle redox-active ligands, with progressively larger N-heterocycle rings (imidazole, pyridine, and quinoline).

View Article and Find Full Text PDF

Two remarkable features of many siderophores produced by oceanic bacteria are the prevalence of an α-hydroxy-carboxylic acid functionality either in the form of the amino acid β-hydroxy aspartic acid or in the form of citric acid, as well as the predominance of amphiphilic siderophores. This review will provide an overview of the photoreactivity that takes place when siderophores containing β-hydroxy aspartic acid and citric acid are coordinated to iron(III). This photoreactivity raises questions about the role of this photochemistry in microbial iron acquisition as well as upper-ocean iron cycling.

View Article and Find Full Text PDF

The syntheses and structures of three new coordinatively unsaturated, monomeric, square-pyramidal thiolate-ligated Fe(III) complexes are described, [Fe(III)((tame-N(3))S(2)(Me2))](+) (1), [Fe(III)(Et-N(2)S(2)(Me2))(py)](1-) (3), and [Fe(III)((tame-N(2)S)S(2)(Me2))](2-) (15). The anionic bis-carboxamide, tris-thiolate N(2)S(3) coordination sphere of 15 is potentially similar to that of the yet-to-be characterized unmodified form of NHase. Comparison of the magnetic and reactivity properties of these reveals how anionic charge build up (from cationic 1 to anionic 3 and dianionic 15) and spin-state influence apical ligand affinity.

View Article and Find Full Text PDF

Superoxide reduction by thiolate-ligated [FeII(SMe2N4(tren))]+ (1) involves two proton-dependent steps and a single peroxide intermediate, [FeIII(SMe2N4(tren))(OOH)]+ (2). An external proton donor is required, ruling out mechanisms involving H+ or H-atom abstraction from the ligand N-H. The initial protonation step affording 2 occurs with fairly basic proton donors (EtOH, MeOH, NH4+) in THF.

View Article and Find Full Text PDF

The reactivity between a thiolate-ligated five-coordinate complex [FeII(SMe2N4(tren))]+ (1) and dioxygen is examined in order to determine if O2 activation, resembling that of the metalloenzyme cytochrome P450, can be promoted even when O2 binds cis, as opposed to trans, to a thiolate. Previous work in our group showed that [FeII(SMe2N4(tren))]+ (1) reacts readily with superoxide (O2-) in the presence of a proton source to afford H2O2 via an Fe(III)-OOH intermediate, thus providing a biomimetic model for the metalloenzyme superoxide reductase (SOR). Addition of O2 to 1 affords binuclear mu-oxo-bridged [FeIII(SMe2N4(tren))]2(mu2-O)(PF6)2.

View Article and Find Full Text PDF