Background: The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a "common garden" approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication.
Results: Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size).
Background: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B.
View Article and Find Full Text PDFThe Queensland fruit fly, Bactrocera tryoni, is a major pest of Australian horticulture which has expanded its range in association with the spread of horticulture over the last ~ 150 years. Its distribution in northern Australia overlaps that of another fruit fly pest to which some authors accord full species status, Bactrocera aquilonis. We have used reduced representation genome-wide sequencing to genotype 359 individuals taken from 35 populations from across the current range of the two taxa, plus a further 73 individuals from six of those populations collected 15-22 years earlier.
View Article and Find Full Text PDFAn efficient 3,4-dichloroaniline (3,4-DCA)-mineralizing bacterium has been isolated from enrichment cultures originating from a soil sample with a history of repeated exposure to diuron, a major metabolite of which is 3,4-DCA. This bacterium, Bacillus megaterium IMT21, also mineralized 2,3-, 2,4-, 2,5- and 3,5-DCA as sole sources of carbon and energy. These five DCA isomers were degraded via two different routes.
View Article and Find Full Text PDFThe atrazine chlorohydrolase AtzA has evolved within the past 50 years to catalyze the hydrolytic dechlorination of the herbicide atrazine. It is of wide research interest for two reasons: first, catalytic improvement of the enzyme would facilitate its application in bioremediation, and second, because of its recent evolution, it presents a rare opportunity to examine the early stages in the acquisition of new catalytic activities. Using a structural model of the AtzA-atrazine complex, a region of the substrate-binding pocket was targeted for combinatorial randomization.
View Article and Find Full Text PDFThis paper describes a screening strategy incorporating resistant insect lines for discovery of new Bacillus thuringiensis toxins against a background of known genes that would normally mask the activity of additional genes and the application of that strategy. A line of Helicoverpa armigera with resistance to Cry1Ac (line ISOC) was used to screen Cry1Ac-expressing strains of B. thuringiensis for additional toxins with activity against H.
View Article and Find Full Text PDF