The use of nanomaterials as a means of recovering heavy and light oil from petroleum reservoirs has increased over the preceding twenty years. Most researchers have found that injecting a nanoparticle dispersion (nanofluids) has led to good results and increased the amount of oil that can be recovered. In this research, we aim to imitate the three-dimensional hexagonal prism in the existence of SiO2 and Al2O3 nanoparticles for better oil recovery.
View Article and Find Full Text PDFEnhanced oil recovery (EOR) has been offered as an alternative to declining crude oil production. EOR using nanotechnology is one of the most innovative trends in the petroleum industry. In order to determine the maximum oil recovery, the effect of a 3D rectangular prism shape is numerically investigated in this study.
View Article and Find Full Text PDFHybrid ferrofluid is a unique heat transfer fluid because it can be magnetically controlled and ideal in various applications. Further exploration to unleash its potential through studying heat transfer and boundary layer flow is crucial, especially in solving the thermal efficiency problem. Hence, this research focuses on the numerical examination of flow behaviour and heat transfer attributes of magnetized hybrid ferrofluid water across a permeable moving surface considering the mutual effects of magnetohydrodynamic (MHD), viscous dissipation, and suction/injection.
View Article and Find Full Text PDFNanofluids and nanotechnology are very important in enhancing heat transfer due to the thermal conductivity of their nanoparticles, which play a vital role in heat transfer applications. Researchers have used cavities filled with nanofluids for two decades to increase the heat-transfer rate. This review also highlights a variety of theoretical and experimentally measured cavities by exploring the following parameters: the significance of cavities in nanofluids, the effects of nanoparticle concentration and nanoparticle material, the influence of the inclination angle of cavities, heater and cooler effects, and magnetic field effects in cavities.
View Article and Find Full Text PDFNumerous manufacturing processes, including the drawing of plastic films, have a major impact on mass transport. These functionalities necessitate the solution of the Falkner-Skan equation and some of its configurations when applied to various geometries and boundary conditions. Hence, the current paper discusses the impact of unsteady hybrid nanofluid flow on a moving Falkner-Skan wedge with a convective boundary condition.
View Article and Find Full Text PDFPrevious research has recognised the study of stagnation point flow by focusing Maxwell nanofluid on a stretching sheet surface. Motivated by this research idea, our main objective is to formulate and analyse a new mathematical model of stagnation point flow in Maxwell fluid that highlights the dual types of fluid known as hybrid nanofluids. The effects of thermal radiation and heat transfer are also considered.
View Article and Find Full Text PDFIn this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab.
View Article and Find Full Text PDFThe paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed.
View Article and Find Full Text PDF