To address the future food security in Asia, we need to improve the genetic gain of grain yield while ensuring the consumer acceptance. This study aimed to identify novel genes influencing the number of upper secondary rachis branches (USRB) to elevate superior grains without compromising grain quality by studying the genetic variance of 310 diverse O. sativa var.
View Article and Find Full Text PDFBrown rice (Oryza sativa) possesses various nutritionally dense bioactive phytochemicals exhibiting a wide range of antioxidant, anti-cancer, and anti-diabetic properties known to promote various human health benefits. However, despite the wide claims made about the importance of brown rice for human nutrition the underlying metabolic diversity has not been systematically explored. Non-targeted metabolite profiling of developing and mature seeds of a diverse genetic panel of 320 rice cultivars allowed quantification of 117 metabolites.
View Article and Find Full Text PDFResistant starch (RS) is the portion of starch that escapes gastrointestinal digestion and acts as a substrate for fermentation of probiotic bacteria in the gut. Aside from enhancing gut health, RS contributes to a lower glycemic index. A genome-wide association study coupled with targeted gene association studies was conducted utilizing a diverse panel of 281 resequenced Indica rice lines comprising of ~2.
View Article and Find Full Text PDFHigher head rice yield (HRY), which represents the proportion of intact grains that survive milling, and lower grain chalkiness (opacity) are key quality traits. We investigated the genetic basis of HRY and chalkiness in 320 diverse resequenced accessions of indica rice with integrated single- and multi-locus genome-wide association studies using 2.26 million single-nucleotide polymorphisms.
View Article and Find Full Text PDFPanicle architecture is known to directly influence grain yield in rice, and thus is an important trait for rice varietal improvement. However, spike branching consequences trigger variation in number of superior and inferior grains and thus affect grain quality. The genetics behind the length of both primary and secondary branches were studied resulting in the identification of cloned genes.
View Article and Find Full Text PDFIn this study, we used 2.9 million single nucleotide polymorphisms (SNP) and 393,429 indels derived from whole genome sequences of 591 rice landraces to determine the genetic basis of cooked and raw grain length, width and shape using genome-wide association study (GWAS). We identified a unique fine-mapped genetic region GWi7.
View Article and Find Full Text PDFRice lines with slower starch digestibility provide opportunities in mitigating the global rise in type II diabetes and related non-communicable diseases. However, screening for low glycemic index (GI) in rice breeding programs is not possible due to time and cost constraints. This study evaluated the feasibility of using in vitro cooked grain amylolysis, starch mobilization patterns during seed germination, and variation in starch structure and composition in the mature seed to differentiate patterns of starch digestibility.
View Article and Find Full Text PDFA deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin.
View Article and Find Full Text PDFThe holistic understanding derived from integrating grain quality and sensory research outcomes in breeding high-quality rice in the light of post-genomics resources has been synthesized. Acceptance of new rice genotypes by producers and consumers hinges not only on their potential for higher yield but recent emphasis has also been on premium-value genotypes that have the ability to satisfy consumer preferences for grain quality. This review article provides insights into how to link grain quality attributes and sensory perception to support breeding superior rice varieties.
View Article and Find Full Text PDFTo ensure rice food security, the target outputs of future rice breeding programmes should focus on developing climate-resilient rice varieties with emphasis on increased head rice yield coupled with superior grain quality. This challenge is made greater by a world that is increasingly becoming warmer. Such environmental changes dramatically impact head rice and milling yield as well as increasing chalkiness because of impairment in starch accumulation and other storage biosynthetic pathways in the grain.
View Article and Find Full Text PDF