Publications by authors named "Rosita Stomberg"

Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS.

View Article and Find Full Text PDF

Astrocytes provide structural and metabolic support of neuronal tissue, but may also be involved in shaping synaptic output. To further define the role of striatal astrocytes in modulating neurotransmission we performed in vivo microdialysis and ex vivo slice electrophysiology combined with metabolic, chemogenetic, and pharmacological approaches. Microdialysis recordings revealed that intrastriatal perfusion of the metabolic uncoupler fluorocitrate (FC) produced a robust increase in extracellular glutamate levels, with a parallel and progressive decline in glutamine.

View Article and Find Full Text PDF

Schizophrenia is associated with three main categories of symptoms; positive, negative and cognitive. Of these, only the positive symptoms respond well to treatment with antipsychotics. Due to the lack of effect of antipsychotics on negative symptoms, it has been suggested that while the positive symptoms are related to a hyperdopaminergic state in associative striatum, the negative symptoms may be a result of a reduced dopamine (DA) activity in the nucleus accumbens (nAc).

View Article and Find Full Text PDF

Drugs of abuse share the ability to increase extracellular dopamine (DA) levels in the mesolimbic DA system. This effect has been linked to positive and reinforcing experiences of drug consumption and is presumed to be of importance for continued use, as well as for the development of dependence and addiction. Previous rat studies from our lab have implicated a neuronal circuitry involving glycine receptors in nucleus accumbens (nAc) and, secondarily, nicotinic acetylcholine receptors in the ventral tegmental area (VTA) in ethanol's (EtOH) DA-elevating effect.

View Article and Find Full Text PDF

Rationale: We recently demonstrated that blocking specific nicotinic acetylcholine receptors (nAChRs) abolishes the conditioned reinforcing properties of ethanol-associated cues in rat, suggesting nAChRs as promising pharmacological targets for prevention of cue-induced relapse.

Objectives: The present study investigated the involvement of nAChR subtypes in the conditioned reinforcing properties of stimuli associated with a natural reward (sucrose).

Methods: Water-deprived rats were trained to associate a tone + light stimulus (CS) with the presentation of a 0.

View Article and Find Full Text PDF

Background: Glycine receptors (GlyRs) in the nucleus accumbens (nAc) and nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA) have been suggested to be involved in the positive reinforcing and dopamine elevating effects of ethanol. Recent studies have also shown that ethanol high-preferring rats substantially decrease their ethanol intake when treated with a glycine transporter 1 inhibitor (ORG 25935). Acamprosate, a drug used for relapse prevention in treatment of alcohol dependence, has also been demonstrated to elevate extracellular dopamine levels in the nAc.

View Article and Find Full Text PDF

Background: The mesolimbic dopamine (DA) projection from the ventral tegmental area to nucleus accumbens (nAc), a central part of the reward system, is activated by ethanol (EtOH) and other drugs of abuse. We have previously demonstrated that the glycine receptor in the nAc and its amino acid agonists may be implicated in the DA activation and reinforcing properties of EtOH. We have also reported that the glycine transporter 1 inhibitor, Org 25935, produces a robust and dose-dependent decrease in EtOH consumption in Wistar rats.

View Article and Find Full Text PDF

Varenicline was recently approved as an aid for smoking cessation. Patients treated with varenicline have reported a concomitant reduction in their alcohol consumption. This compound has also been demonstrated to reduce alcohol seeking and consumption in alcohol high-preferring rats.

View Article and Find Full Text PDF

Ethanol-induced elevations of accumbal dopamine levels have been linked to the reinforcing properties of the drug. However, it has not yet been demonstrated where the primary point of action of ethanol is in the mesolimbic dopamine system, and there appear to be conflicting findings depending on methodology (electrophysiology, microdialysis, or intracranial self-administration). We have suggested that ethanol acts in the nucleus accumbens (nAc), where it activates a neuronal loop involving ventral tegmental nicotinic acetylcholine receptors (nAChRs) to elevate dopamine levels in the nAc.

View Article and Find Full Text PDF

Rationale: Cues associated with alcohol can elicit craving, support drug-seeking and precipitate relapse.

Objectives: We investigated the possible involvement of nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area (VTA) in the conditioned reinforcing properties of ethanol-associated stimuli in the rat.

Materials And Methods: First, using in vivo microdialysis, we analyzed the effect of VTA perfusion of the nonselective nAChR antagonist mecamylamine (MEC) or the selective alpha4beta2* nAChR antagonist dihydro-beta-erythroidine (DHbetaE) on the nucleus accumbens (nAc) dopaminergic response to the presentation of an ethanol-associated conditioned stimulus (CS).

View Article and Find Full Text PDF

Chronic nicotine administration is associated with increased ethanol consumption in laboratory animals and in humans. Some smokers report less sedation during acute ethanol intoxication after nicotine administration and the sedative effects from ethanol are mediated by inhibitory GABA(A)-receptors. In a series of in vivo microdialysis experiments we investigated whether subchronic pre-treatment with nicotinic drugs known to enhance ethanol consumption in the rat (nicotine or the peripheral nicotinic antagonist hexamethonium) could modulate the alterations in extracellular dopamine observed in response to administration of ethanol or the sedative GABA(A)-agonist diazepam.

View Article and Find Full Text PDF

Ethanol-induced accumbal dopamine elevations have been linked to ethanol consumption. It is unclear, however, where along the mesolimbic dopamine system this effect is initiated and why the ethanol-induced dopamine elevations are transient, returning to pre-drug baseline before brain and blood ethanol levels decline. Using in vivo microdialysis, Experiment 1 investigated the effect of local ethanol application in the nucleus accumbens, the ventral tegmental area and the nucleus accumbens+the ventral tegmental area, on accumbal dopamine.

View Article and Find Full Text PDF

The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open.

View Article and Find Full Text PDF

Background: Extracellular dopamine (DA) levels in the nucleus accumbens (nAc) increase after ethanol (EtOH) administration in the rat, a response that may be involved in the positive reinforcing effects of EtOH. The mechanisms underlying this DA activation and how they relate to EtOH reinforcement remain to be elucidated, but recent data indicate that glycine receptors (GlyRs) in the nAc may be involved. Here this hypothesis was further challenged by examining the influence of bilateral accumbal application of glycine (a GlyR agonist), strychnine (a GlyR competitive antagonist), or Ringer on EtOH intake and preference, as well as on the concomitant DA output in the nAc, in EtOH high-preferring male Wistar rats.

View Article and Find Full Text PDF