Publications by authors named "Rosita Ivarsson"

Nicotinamide adenine dinucleotide phosphate (NADPH) enhances Ca(2+)-induced exocytosis in pancreatic beta-cells, an effect suggested to involve the cytosolic redox protein glutaredoxin-1 (GRX-1). We here detail the role of GRX-1 in NADPH-stimulated beta-cell exocytosis and glucose-stimulated insulin secretion. Silencing of GRX-1 by RNA interference reduced glucose-stimulated insulin secretion in both clonal INS-1 832/13 cells and primary rat islets.

View Article and Find Full Text PDF

Although the assembly of a ternary complex between the SNARE proteins syntaxin-1, SNAP25 and VAMP2 is known to be crucial for insulin exocytosis, the mechanisms controlling this key event are poorly understood. We found that pancreatic beta-cells express different isoforms of tomosyn-1, a syntaxin-1-binding protein possessing a SNARE-like motif. Using atomic force microscopy we show that the SNARE-like domain of tomosyn-1 can form a complex with syntaxin-1 and SNAP25 but displays binding forces that are weaker than those observed for VAMP2 (237+/-13 versus 279+/-3 pN).

View Article and Find Full Text PDF

We have examined the importance of the actin-based molecular motor myosin 5a for insulin granule transport and insulin secretion. Expression of myosin 5a was downregulated in clonal INS-1E cells using RNAinterference. Stimulated hormone secretion was reduced by 46% and single-cell exocytosis, measured by capacitance recordings, was inhibited by 42% after silencing.

View Article and Find Full Text PDF

Cellular redox state is an important metabolic variable, influencing many aspects of cell function like growth, apoptosis, and reductive biosynthesis. In this report, we identify NADPH as a candidate signaling molecule for exocytosis in neuroendocrine cells. In pancreatic beta-cells, glucose acutely raised the NADPH-to-NADP+ ratio and stimulated insulin release in parallel.

View Article and Find Full Text PDF

Concerted activation of different voltage-gated Ca( (2+) ) channel isoforms may determine the kinetics of insulin release from pancreatic islets. Here we have elucidated the role of R-type Ca(V)2.3 channels in that process.

View Article and Find Full Text PDF

Glucose-evoked insulin secretion exhibits a biphasic time course and is associated with accelerated intracellular granule movement. We combined live confocal imaging of EGFP-labelled insulin granules with capacitance measurements of exocytosis in clonal INS-1 cells to explore the relation between distinct random and directed modes of insulin granule movement, as well as exocytotic capacity. Reducing the temperature from 34 degrees C to 24 degrees C caused a dramatic 81% drop in the frequency of directed events, but reduced directed velocities by a mere 25%.

View Article and Find Full Text PDF

Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic beta-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on beta-cell PDE3 is, however, scarce.

View Article and Find Full Text PDF

ClC Cl(-) channels in endosomes, synaptosomes, lysosomes, and beta-cell insulin granules provide charge neutralization support for the functionally indispensable acidification of the luminal interior by electrogenic H(+)-ATPases (Jentsch, T. J., Stein, V.

View Article and Find Full Text PDF