Publications by authors named "Rosita Diana"

Azobenzene photoswitches are fundamental components in contemporary approaches aimed at light-driven control of intelligent materials. Significant endeavors are directed towards enhancing the light-triggered reactivity of azobenzenes for such applications and obtaining water-soluble molecules able to act as crosslinkers in a hydrogel. Here, we report the rational design and the synthesis of azobenzene/alginate photoresponsive hydrogels endowed with fast reversible sol-gel transition.

View Article and Find Full Text PDF

Monitorable AIE polymers with a bioactive pattern are employed in advanced biomedical applications such as functional coatings, theranostic probes, and implants. After the global COVID-19 pandemic, interest in developing surfaces with superior antimicrobial, antiproliferative, and antiviral activities dramatically increased. Many formulations for biocide surfaces are based on hybrid organic/inorganic materials.

View Article and Find Full Text PDF

Valinomycin is a potent ionophore known for its ability to transport potassium ions across biological membranes. The study focuses on the hydroxylated analogues of valinomycin (HyVLMs) and compares their energy profiles and capabilities for transporting potassium ions across phospholipid membranes. Using metadynamics, we investigated the energy profiles of wildtype valinomycin (VLM_1) and its three hydroxylated analogues (VLM_2, VLM_3, and VLM_4).

View Article and Find Full Text PDF

Photoresponsive biomaterials have garnered increasing attention recently due to their ability to dynamically regulate biological interactions and cellular behaviors in response to light. This review provides an overview of recent advances in the design, synthesis, and applications of photoresponsive biomaterials, including photochromic molecules, photocleavable linkers, and photoreactive polymers. We highlight the various approaches used to control the photoresponsive behavior of these materials, including modulation of light intensity, wavelength, and duration.

View Article and Find Full Text PDF

Among modern biomaterials, hybrid tools containing an organic component and a metal cation are recognized as added value, and, for many advanced biomedical applications, synthetic polymers are used as thin protective/functional coatings for medical or prosthetic devices and implants. These materials require specific non-degradability, biocompatibility, antimicrobial, and antiproliferative properties to address safety aspects concerning their use in medicine. Moreover, bioimaging monitoring of the biomedical device and/or implant through biological tissues is a desirable ability.

View Article and Find Full Text PDF

Advanced chromophoric tools, besides being biologically active, need to meet the expectations of the technological demands including stability, colour retention, and proper solubility for their target. Many coordination compounds of conjugated ligands are antibacterial dyes, able to combine a strong dyeing performance with a useful biological activity. Specifically, palladium (II) complexes of Schiff base ligands are known for their relevant activity against common bacteria.

View Article and Find Full Text PDF

Solid-state emitters exhibiting mechano-fluorochromic or thermo-fluorochromic responses represent the foundation of smart tools for novel technological applications. Among fluorochromic (FC) materials, solid-state emissive coordination complexes offer a variety of fluorescence responses related to the dynamic of noncovalent metal-ligand coordination bonds. Relevant FC behaviour can result from the targeted choice of metal cation and ligands.

View Article and Find Full Text PDF

The growing demand of responsive tools for biological and biomedical applications pushes towards new low-cost probes easy to synthesize and versatile. Current optical probes are theranostic tools simultaneously responsive to biological parameters/analyte and therapeutically operating. Among the optical methods for pH monitoring, simple small organic molecules including multifunctional probes for simultaneous biological activity being highly desired by scientists and technicians.

View Article and Find Full Text PDF

In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a "turn-on" of the fluorescence emission.

View Article and Find Full Text PDF

The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response.

View Article and Find Full Text PDF

Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of "AIEgens" was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic-inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal.

View Article and Find Full Text PDF

Tridentate ligands are simple low-cost pincers, easy to synthetize, and able to guarantee stability to the derived complexes. On the other hand, due to its unique mix of structural and optical properties, zinc(II) ion is an excellent candidate to modulate the emission pattern as desired. The present work is an overview of selected articles about zinc(II) complexes showing a tuned fluorescence response with respect to their tridentate ligands.

View Article and Find Full Text PDF

Two novel polyimines were synthesized from a benzodifuran based diamino monomer and two dialdehydes bearing bulky groups and a flexible spacer. The polymers display tuned luminescence performance according to the presence of half-salen groups. The effect of the intramolecular bond on the emission properties were examined.

View Article and Find Full Text PDF

Two novel symmetrical bis-azobenzene red dyes ending with electron-withdrawing or donor groups were synthesized. Both chromophores display good solubility, excellent chemical, and thermal stability. The two dyes are fluorescent in solution and in the solid-state.

View Article and Find Full Text PDF

Two efficient deep red (DR)-emitting organic dicyano-phenylenevinylene derivatives with terminal withdrawing or donor groups were synthesized. The spectroscopic properties of the neat solids and the low-doped layers in polystyrene or polyvinylcarbazole host matrixes were analyzed, and the luminescence performance was explained using density functional theory (DFT) analysis. A noteworthy 89% fluorescence quantum yield was observed for the brightest red-emissive polyvinylcarbazole (PVK) blend.

View Article and Find Full Text PDF

A new pH sensor based on a substituted aroylhydrazide with a flexible side chain and a terminal trimethyl ammonium group (PHA) was designed and synthesized. The terminal quaternary ammonium guarantees excellent solubility in water. At the same time, the probe is very soluble in hydrophobic envirornments.

View Article and Find Full Text PDF

Three aryl-hydrazone ,, tridentate ligands with a different electron-withdrawing substituent were prepared. The introduction of a flexible charged chain in the ligands guaranteed solubility in many organic solvents and in water. The increasing withdrawing aptitude of the substituents red-shifted the emission in the correspondent metallopolymers.

View Article and Find Full Text PDF

From a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular interactions and flexible tails to guarantee solubility were added to the fluorogenic cores. Photochemical performances were investigated on the small molecules in solution, as neat crystals and as dopants in polymeric matrixes.

View Article and Find Full Text PDF

The title benzo-furan derivatives 2-amino-5-hy-droxy-4-(4-nitro-phen-yl)benzo-furan-3-carboxyl-ate (BF1), CHNO, and 2-meth-oxy-ethyl 2-amino-5-hy-droxy-4-(4-nitro-phen-yl)benzo-furan-3-carboxyl-ate (BF2), CHNO, recently attracted attention because of their promising anti-tumoral activity. BF1 crystallizes in the space group . BF2 in the space group 21/.

View Article and Find Full Text PDF

Four 4-nitrophenyl-functionalized benzofuran (BF1, BF2) and benzodifuran (BDF1, BDF2) compounds were synthesized by a convenient route based on the Craven reaction. All the compounds underwent a detailed chemical-physical characterization to evaluate their structural, thermal and optical properties. An investigation on the therapeutic potential of the reported compounds was performed by analyzing their antiproliferative activity on prostatic tumour cells (PC-3).

View Article and Find Full Text PDF

Currently considerable research both in life and in environmental sciences is dedicated to chemosensors able to detect metals of biological interest such as zinc and iron or other toxic and carcinogenic, as cadmium, mercury, chromium, lead. Recently, a new chemosensor strategy of "single chemosensor for multiple metals" has emerged. For this scope, many fluorescent sensors for Cd(II) and Zn(II) have been designed and synthetized, as ligand systems or in polymeric matrices [1], [2], [3].

View Article and Find Full Text PDF

The effects of aggregation-induced emission (AIE) and of aggregation caused quenching (ACQ) were observed and discussed on two solid materials based on a phenylenevinylene (PV) and a dicyano-PV structure. The brightest emitter in solid films shows a high fluorescence quantum yield in the deep red/near IR (DR/NIR) region (75%). The spectroscopic properties of the two crystalline solids have been described and compared in terms of crystallographic data and time dependent DFT analysis.

View Article and Find Full Text PDF

An efficient deep red (DR)-emitting organic solid based on a dicyano-phenylenevinylene derivative was reported. The structural and spectroscopic properties of the solid have been described in terms of crystallographic data and time-dependent DFT analysis. A noteworthy fluorescence quantum yield of 53% was observed for the brightest emitter cast into solid films.

View Article and Find Full Text PDF

Some novel (phenyl-diazenyl)phenols (-) were designed and synthesized to be evaluated for their antibacterial activity. Starting from an active previously-synthesized azobenzene chosen as lead compound, we introduced some modifications and optimization of the structure, in order to improve solubility and drug conveyance. Structures of all newly-synthesized compounds were confirmed by ¹H nuclear magnetic resonance (NMR), mass spectrometry, and UV-Vis spectroscopy.

View Article and Find Full Text PDF

Some novel (phenyl-diazenyl)phenols - were designed and synthesized to be evaluated for their antimicrobial activity. A previously synthesized molecule, active against bacteria and fungi, was used as lead for modifications and optimization of the structure, by introduction/removal or displacement of hydroxyl groups on the azobenzene rings. The aim of this work was to evaluate the consequent changes of the antimicrobial activity and to validate the hypothesis that, for these compounds, a plausible mechanism could involve an interaction with protein receptors, rather than an interaction with membrane.

View Article and Find Full Text PDF