Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and HO. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens.
View Article and Find Full Text PDFPresbyopia is caused by age-related lenticular hardening, resulting in near vision loss, and it occurs in almost every individual aged ≥50 years. The lens experiences mechanical pressure during for focal adjustment to change its thickness. As lenticular stiffening results in incomplete thickness changes, near vision is reduced, which is known as presbyopia.
View Article and Find Full Text PDFThe ocular lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. The lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the transparency and refractive properties of the lens. This flow of water generates a substantial hydrostatic pressure gradient which is regulated by a dual feedback system that uses the mechanosensitive channels TRPV1 and TRPV4 to sense decreases and increases, respectively, in the pressure gradient.
View Article and Find Full Text PDFIn mice, the contraction of the ciliary muscle via the administration of pilocarpine reduces the zonular tension applied to the lens and activates the TRPV1-mediated arm of a dual feedback system that regulates the lens' hydrostatic pressure gradient. In the rat lens, this pilocarpine-induced reduction in zonular tension also causes the water channel AQP5 to be removed from the membranes of fiber cells located in the anterior influx and equatorial efflux zones. Here, we determined whether this pilocarpine-induced membrane trafficking of AQP5 is also regulated by the activation of TRPV1.
View Article and Find Full Text PDFThe lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. Alterations to the refractive properties of the lens contribute to the process of emmetropisation in early childhood, and then the gradual loss in lens power that occurs throughout adulthood. In parallel to these changes to lens refractive power, age-dependent increases in lens stiffness and light scattering result in presbyopia and cataract, respectively.
View Article and Find Full Text PDFCataract and presbyopia are the leading cause of vision loss and impaired vision, respectively, worldwide. Changes in lens biochemistry and physiology with age are responsible for vision impairment, yet the specific molecular changes that underpin such changes are not entirely understood. In order to preserve transparency over decades of life, the lens establishes and maintains a microcirculation system (MCS) that, through spatially localized ion pumps, induces circulation of water and nutrients into (influx) and metabolites out of (outflow and efflux) the lens.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2022
The optical properties of the bovine lens have been shown to be actively maintained by an internal microcirculation system. In the mouse lens, this water transport through gap junction channels generates an intracellular hydrostatic pressure gradient, which is subjected to a dual feedback regulation that is mediated by the reciprocal modulation of the transient receptor potential vanilloid channels TRPV1 and TRPV4. Here we test whether a similar feedback regulation of pressure exists in the bovine lens and whether it regulates overall lens optics.
View Article and Find Full Text PDFLens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy.
View Article and Find Full Text PDFPurpose: The lens uses circulating fluxes of ions and water that enter the lens at both poles and exit at the equator to maintain its optical properties. We have mapped the subcellular distribution of the lens aquaporins (AQP0, AQP1, and AQP5) in these water influx and efflux zones and investigated how their membrane location is affected by changes in tension applied to the lens by the zonules.
Methods: Immunohistochemistry using AQP antibodies was performed on axial sections obtained from rat lenses that had been removed from the eye and then fixed or were fixed in situ to maintain zonular tension.
The transient receptor protein vanilloid channels, TRPV1 and TRPV4, have recently been shown to be mechanosensors in the ocular lens that act to transduce physical changes in lens volume and internal hydrostatic pressure into the activation of signalling pathways in lens epithelial cells. These pathways in turn regulate ion and water transport to ensure that the optical properties of the lens remain constant. Despite the functional evidence that implicate the roles of TRPV1 and TRPV4 in the lens, their respective cellular expression patterns in the different regions of the lens has to date not been fully characterised.
View Article and Find Full Text PDFAquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens.
View Article and Find Full Text PDFAlthough the functionality of the lens water channels aquaporin 1 (AQP1; epithelium) and AQP0 (fiber cells) is well established, less is known about the role of AQP5 in the lens. Since in other tissues AQP5 functions as a regulated water channel with a water permeability (P) some 20 times higher than AQP0, AQP5 could function to modulate P in lens fiber cells. To test this possibility, a fluorescence dye dilution assay was used to calculate the relative P of epithelial cells and fiber membrane vesicles isolated from either the mouse or rat lens, in the absence and presence of HgCl, an inhibitor of AQP1 and AQP5.
View Article and Find Full Text PDFThe expression of the water channel protein aquaporin (AQP)-5 in adult rodent and human lenses was recently reported using immunohistochemistry, molecular biology, and mass spectrometry techniques, confirming a second transmembrane water channel that is present in lens fibre cells in addition to the abundant AQP0 protein. Interestingly, the sub-cellular distribution and level of post-translational modification of both proteins changes with fibre cell differentiation and location in the adult rodent lens. This study compares the sub-cellular distribution of AQP0 and AQP5 during embryonic and postnatal fibre cell development in the mouse lens to understand how the immunolabelling patterns for both AQPs observed in adult lens are first established.
View Article and Find Full Text PDFUntil recently, the lens was thought to express only two aquaporin (AQP) water channels, AQP1 and AQP0. In this study we confirm lenticular AQP5 protein expression by Western blotting and mass spectrometry in lenses from a variety of species. In addition, confocal microscopy was used to map cellular distributions of AQP5 in mouse, rat and human lenses.
View Article and Find Full Text PDFThe serum amyloid A protein is one of the major reactants in the acute-phase response. Using representational difference analysis comparing RNA from normal and involuting quarters of a dairy cow mammary gland, we found an mRNA encoding the SAA3 protein (M-SAA3). The M-SAA3 mRNA was localized to restricted populations of bovine mammary epithelial cells (MECs).
View Article and Find Full Text PDFThe title compound, C6H12NO5P, was synthesized as an intermediate phase in a search for new N-(phosphonomethyl)glycine derivatives. The molecules are held together by O-H..
View Article and Find Full Text PDFThe title compound [systematic name: 1'-aminocyclohexanespiro-4'-imidazole-2',5'(3'H,4'H)-dione], C8H13N3O2, has been synthesized and was found to crystallize in two different structures, both monoclinic and both with the same P2(1)/c space group. In the first structure, there are two molecules in the asymmetric unit, one of which uses all of its hydrogen-bond donors and acceptors and forms undulating layers, while the other forms chains propagating perpendicular to the layers. In the second structure, there is only one independent molecule and the packing is based on a chain structure mediated by hydrogen bonding between the hydantoin moieties and further grouped into hydrophilic layers separated by layers of the hydrophobic cyclohexyl groups.
View Article and Find Full Text PDFThe title compound, C16H9NO4, also known as the 3-benzoylpyridinium betaine of squaric acid, exhibits a dipolar electronic ground-state structure with a positively charged pyridinium fragment and a negatively charged squarate moiety. In the molecule, the two aromatic rings are twisted by 56.03 (2) degrees relative to one another.
View Article and Find Full Text PDF