Publications by authors named "Rosica Mincheva"

Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa.

View Article and Find Full Text PDF

Ethylene brassylate is a renewable macrolactone from castor oil that can be polymerized via ring-opening polymerization (ROP) to obtain a fully biosourced biodegradable polyester. ROP mediated by organometallic catalysts leads to high molar mass poly(ethylene brassylate) (PEB). However, the use of metal-free organocatalysis has several advantages, such as the reduction of toxic and expensive metals.

View Article and Find Full Text PDF

Quantifying microplastics (MPs) in marine environments is challenging due to the complexities of differentiation from other materials. This study aims to distinguish petro-sourced plastic microfilaments from organic ones in environmental samples using scanning electron microscope coupled with energy dispersive X-ray (SEM-EDX) analysis. Therefore, 38 particles resembling MPs (PRMPs) from sediments and organisms in Madagascar were analyzed.

View Article and Find Full Text PDF

Heat-shrinkable films are widely used as disposable secondary packaging but are conventionally made from fossil-based and nonbiodegradable polyvinyl chloride or polyethylene. To lower the environmental impact of such products, this work reports the development of recyclable, biodegradable, and partially biosourced heat-shrinkable biocomposites that are cost-competitive with existing shrink wraps. Poly(butylene adipate--terephthalate), a growing biodegradable thermoplastic, was simultaneously reinforced with pulp fibers and partially cross-linked in a single-step reactive melt processing.

View Article and Find Full Text PDF

This review introduces groundbreaking insights in polymer science, specifically spotlighting a novel review of the solid-state modification (SSM) approach of thermoplastic polymers, a method not extensively explored. Unlike traditional melt polymer modification, SSM stands out by incorporating monomers or oligomers into the amorphous phase of polymers through innovative exchange reactions. The background of the study places thermoplastics within the context of their increased use over the past century, highlighting their versatility in various applications and the associated environmental and health concerns due to certain additives.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of polymer prodrug structures using natural compounds, like curcumin, shows potential in cancer prevention and detection.
  • Curcumin was modified with poly(ethylene glycol) to create a water-soluble product (PEG-Curc), and its properties were characterized using various spectroscopy methods.
  • Biological tests revealed that PEG-Curc retains strong anticancer and antimicrobial activities, suggesting it could lead to more advanced clinical applications.
View Article and Find Full Text PDF

Over the last decades, the global life expectancy of the population has increased, and so, consequently, has the risk of cancer development. Despite the improvement in cancer therapies (e.g.

View Article and Find Full Text PDF

The present study aims to improve the interfacial bonding between hydroxyapatite particles (HAs) and polylactide (PLA) to enhance the mechanical performance and biocompatibility of bone implants based on HA/PLA. For this, one-shot surface functionalization of HA via plasma polymerization is developed. Taking advantage of acetylene plasma chemistry, the hydrophobicity of HA particles was finely tuned prior to their introduction into a PLA matrix via an extrusion process.

View Article and Find Full Text PDF

In this study, a simple method to immobilize chitosan on a poly(lactic acid) (PLA) surface was developed in a fast manner. The immobilization was realized in two steps. First, an atmospheric plasma (MWAP) torch was used to modify the PLA surface in less than 5 min in order to create enough activated sites toward the chitosan adhesion, followed by a direct dip coating to spread and immobilize chitosan on this MWAP-modified PLA surface.

View Article and Find Full Text PDF

The present work highlights the crucial role of the interfacial compatibilization on the design of polylactic acid (PLA)/Magnesium (Mg) composites for bone regeneration applications. In this regard, an amphiphilic poly(ethylene oxide-b-L,L-lactide) diblock copolymer with predefined composition was synthesised and used as a new interface to provide physical interactions between the metallic filler and the biopolymer matrix. This strategy allowed (i) overcoming the PLA/Mg interfacial adhesion weakness and (ii) modulating the composite hydrophilicity, bioactivity and biological behaviour.

View Article and Find Full Text PDF

The influence of ultra-short laser modification on the surface morphology and possible chemical alteration of poly-lactic acid (PLA) matrix in respect to the optimization of cellular and antibacterial behavior were investigated in this study. Scanning electron microscopy (SEM) morphological examination of the processed PLA surface showed the formation of diverse hierarchical surface microstructures, generated by irradiation with a range of laser fluences (F) and scanning velocities (V) values. By controlling the laser parameters, diverse surface roughness can be achieved, thus influencing cellular dynamics.

View Article and Find Full Text PDF

The substitution of petrochemical plastics by bio-based and biodegradable plastics are in need of an evaluation for the potential toxic impacts that they can have on marine wildlife. This study aims to assess the toxicological effects of polylactic acid microparticles at two concentrations, 10 and 100 μg/L, during 8 days on the blue mussel, Mytilus edulis. No significant oxidative stress (catalase, glutathione-S-transferase and superoxide dismutase activities), neurotoxicity (acetylcholinesterase), or immunotoxicity (lysosomal membrane stability and acid phosphatase activity) were detectable.

View Article and Find Full Text PDF

One-step reactive melt processing (REx) via radical reactions was evaluated with the aim of improving the rheological properties of poly(ε-caprolactone) (PCL). In particular, a water-assisted REx was designed under the hypothesis of increasing crosslinking efficiency with water as a low viscous medium in comparison with a slower PCL macroradicals diffusion in the melt state. To assess the effect of dry vs.

View Article and Find Full Text PDF

This work details the scalable and solventless synthesis of a potential fully biobased monobenzoxazine resin derived from tyrosol and furfurylamine. The structure of the monomer was studied by nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR). The curing of the precursors was characterized by differential scanning calorimetry (DSC), rheological measurements, and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

In this study, a highly efficient flame-retardant bioplastic poly(lactide) was developed by covalently incorporating flame-retardant DOPO, that is, 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide. To that end, a three-step strategy that combines the catalyzed ring-opening polymerization (ROP) of L,L-lactide (L,L-LA) in bulk from a pre-synthesized DOPO-diamine initiator, followed by bulk chain-coupling reaction by reactive extrusion of the so-obtained phosphorylated polylactide (PLA) oligomers (DOPO-PLA) with hexamethylene diisocyanate (HDI), is described. The flame retardancy of the phosphorylated PLA (DOPO-PLA-PU) was investigated by mass loss cone calorimetry and UL-94 tests.

View Article and Find Full Text PDF

Reactive extrusion and magnesium (II) -heterocyclic carbene catalyst are successfully employed in continuous polylactide synthesis. The possibility of using six-membered -heterocyclic carbene adducts to act as efficient catalysts towards the sustainable synthesis of poly(l-lactide) through ring-opening polymerization of l-lactide (LA) is first investigated in bulk batch reactions. Under optimized solvent-free conditions, polylactide (PLA) of moderate to high molecular weights and excellent optical activities are successfully achieved.

View Article and Find Full Text PDF

A novel poly(epsilon-caprolactone) (PCL) supramolecular network exhibiting shape-memory behavior was successfully constructed with pendant UPy units that are highly able to dimerize. The dynamic network was obtained by a simple and versatile strategy consisting of chain-extension reaction between α,ω-dihydroxyoligoPCL and hydroxylated UPy units in the presence of hexamethylene diisocyanate as a coupling agent and further intermolecular dimerization of the UPy along the polyurethane backbone. H NMR analyses confirmed the dynamic features of the system, and DMTA in tensile mode was investigated to assess the SMP properties.

View Article and Find Full Text PDF

All-biobased and biodegradable nanocomposites consisting of poly(l-lactide) (PLLA) and starch nanoplatelets (SNPs) were prepared via a new strategy involving supramolecular chemistry, i.e., stereocomplexation and hydrogen-bonding interactions.

View Article and Find Full Text PDF

The crystallization and morphology of PLA--PBS copolymers and their corresponding stereocomplexes were studied. The effect of flexible blocks (i.e.

View Article and Find Full Text PDF

Two methods, the first physical and the other chemical, were investigated to modify the surface roughness of polydimethylsiloxane (PDMS) films. The physical method consisted of dispersing multi-walled carbon nanotubes (MWCNTs) and magnetic cobalt ferrites (CoFe₂O₄) prior to thermal cross-linking, and curing the composite system in the presence of a uniform magnetic field . The chemical method was based on exposing the films to bromine vapours and then UV-irradiating.

View Article and Find Full Text PDF

This article reports on the successful preparation and characterization of cellulose nanocrystals (CNCs) surface-modified with polylactide (PLA) and poly(butylene succinate) (PBS) binary mixed homopolymer brushes. Their synthesis was designed as a three-step procedure combining polyester synthesis and surface-modification of CNCs with simultaneous polyester grafting via a heterogeneous copper(I)-catalyzed azide-alkyne cycloaddition reaction. For comparison, single homopolymer brushes tethered to CNCs (PLLA-g-CNC and PBSBDEMPAM-g-CNC) were obtained applying the same procedure.

View Article and Find Full Text PDF

Smart multiresponsive bionanocomposites with both humidity- and thermally activated shape-memory effects, based on blends of ethylene-vinyl acetate (EVA) and thermoplastic starch (TPS) are designed. Thermo- and humidity-mechanical cyclic experiments are performed in order to demonstrate the humidity- as well as thermally activated shape memory properties of the starch-based materials. In particular, the induced-crystallization is used in order to thermally activate the EVA shape memory response.

View Article and Find Full Text PDF

For the first time the preparation of defect-free fibers from immiscible blends of high molar mass poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) in the whole range of the polyester weight ratios is shown. Electrospinning using the solvent-nonsolvent approach proved most appropriate. Moreover, electrospinning revealed crucial for the obtaining of PLA/PBS materials maintaining integrity.

View Article and Find Full Text PDF

The improvement of the (bio)adhesive properties of elastomeric polydimethylsiloxane (PDMS) coatings is reported. This is achieved by a surface modification consisting of the incorporation of block copolymers containing a PDMS block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block in a PDMS matrix, followed by matrix cross-linking and immersion of the obtained materials in water. Contact angle measurements (CA), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) showed the presence of the PDMAEMA block at the surface, drastic morphology changes, and improved adhesion properties after immersion in water.

View Article and Find Full Text PDF
Article Synopsis
  • Atomic force microscopy was used to study how a responsive adhesive polymer interacts with water and salt, focusing on its hydrophobic and electrostatic properties.
  • The polymer consisted of a PDMS block and a PDMAEMA block, showing distinct nanoscale domains in its fresh state, and these changed significantly after 30 days of immersion in water.
  • Results indicated that fresh samples were hydrophobic, but aged samples showed reduced hydrophobicity and the emergence of hydrophilic domains, highlighting how environmental factors can influence polymer adhesion properties.
View Article and Find Full Text PDF