Publications by authors named "Rosi G"

Purpose: Craniofacial osteotomies involving pterygomaxillary disjunction are common procedures in maxillofacial surgery. Surgeons still rely on their proprioception to determine when to stop impacting the osteotome, which is important to avoid complications such as dental damage and bleeding. Our group has developed a technique consisting in using an instrumented hammer that can provide information on the mechanical properties of the tissue located around the osteotome tip.

View Article and Find Full Text PDF

Recent advances in additive manufacturing (AM) of viscoelastic materials have paved the way toward the design of increasingly complex structures. In particular, emerging biomedical applications in acoustics involve structures with periodic micro-architectures, which require a precise knowledge of longitudinal and transverse bulk properties of the constituent materials. However, the identification of the transverse properties of highly soft and attenuating materials remains particularly challenging.

View Article and Find Full Text PDF

Background: Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability.

Method: This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring.

View Article and Find Full Text PDF

In various medical fields, a change of soft tissue stiffness is associated with its physio-pathological evolution. While elastography is extensively employed to assess soft tissue stiffness in vivo, its application requires a complex and expensive technology. The aim of this study is to determine whether an easy-to-use method based on impact analysis can be employed to determine the concentration of agar-based soft tissue mimicking phantoms.

View Article and Find Full Text PDF

We demonstrate a novel scheme for Raman-pulse and Bragg-pulse atom interferometry based on the 5S-6P blue transitions of ^{87}Rb that provides an increase by a factor ∼2 of the interferometer phase due to accelerations with respect to the commonly used infrared transition at 780 nm. A narrow-linewidth laser system generating more than 1 W of light in the 420-422 nm range was developed for this purpose. Used as a cold-atom gravity gradiometer, our Raman interferometer attains a stability to differential acceleration measurements of 1×10^{-8}  g at 1 s and 2×10^{-10}  g after 2000 s of integration time.

View Article and Find Full Text PDF

Periprosthetic femoral bone fractures are frequent complications of Total Hip Arthroplasty (THA) and may occur during the insertion of uncemented Femoral Stems (FS), due to the nature of the press-fit fixation. Such fracture may lead to the surgical failure of the THA and require a revision surgery, which may have dramatic consequences. Therefore, an early detection of intra-operative fractures is important to avoid worsening the fracture and/or to enable a peroperative treatment.

View Article and Find Full Text PDF

Osteotomies are common procedures in maxillofacial and orthopedic surgery. The surgeons still rely on their proprioception to control the progression of the osteotome. Our group has developed an instrumented hammer that was shown to provide information on the biomechanical properties of the tissue located around the osteotome tip.

View Article and Find Full Text PDF

Multi-material additive manufacturing is receiving increasing attention in the field of acoustics, in particular towards the design of micro-architectured periodic media used to achieve programmable ultrasonic responses. To unravel the effect of the material properties and spatial arrangement of the printed constituents, there is an unmet need in developing wave propagation models for prediction and optimization purposes. In this study, we propose to investigate the transmission of longitudinal ultrasound waves through 1D-periodic biphasic media, whose constituent materials are viscoelastic.

View Article and Find Full Text PDF
Article Synopsis
  • * It investigates the relationship between resonance frequencies of the bone-implant system and the stability of the femoral stem, focusing on variables such as interference fit, bone stiffness, and friction during implant insertion.
  • * Results indicate a trade-off between maximizing bone-implant contact and maintaining adequate pull-out force; vibration analysis methods can help optimize implant stability for different patients and surgical settings.
View Article and Find Full Text PDF

Photopolymer-based additive manufacturing has received increasing attention in the field of acoustics over the past decade, specifically towards the design of tissue-mimicking phantoms and passive components for ultrasound imaging and therapy. While these applications rely on an accurate characterization of the longitudinal bulk properties of the materials, emerging applications involving periodic micro-architectured media also require the knowledge of the transverse bulk properties to achieve the desired acoustic behavior. However, a robust knowledge of these properties is still lacking for such attenuating materials.

View Article and Find Full Text PDF

Functional grading is a distinctive feature adopted by nature to improve the transition between tissues that present a strong mismatch in mechanical properties, a relevant example being the tendon-to-bone attachment. Recent progress in multi-material additive manufacturing now allows for the design and fabrication of bioinspired functionally graded soft-to-hard composites. Nevertheless, this emerging technology depends on several design variables, including both material and mechanistic ingredients, that are likely to affect the mechanical performance of such composites.

View Article and Find Full Text PDF

The femoral stem primary stability achieved by the impaction of an ancillary during its insertion is an important factor of success in cementless surgery. However, surgeons still rely on their proprioception, making the process highly subjective. The use of Experimental Modal Analysis (EMA) without sensor nor probe fixation on the implant or on the bone is a promising non destructive approach to determine the femoral stem stability.

View Article and Find Full Text PDF

Osteotomies during rhinoplasty are usually based on the surgeon's proprioception to determine the number and the strength of the impacts. The aim of this study is to determine whether a hammer instrumented with a force sensor can be used to classify fractures and to determine the location of the osteotome tip. Two lateral osteotomies were realized in nine anatomical subjects using an instrumented hammer recording the evolution of the impact force.

View Article and Find Full Text PDF

: Smart drugs are among the most common drugs used by students. It is estimated that they are second in incidence after cannabis. Although they are usually used for diseases such as attention deficit hyperactivity disorder (ADHD) and dementia, in most cases the use of smart drugs is illegal and without a prescription.

View Article and Find Full Text PDF
Article Synopsis
  • Osteotomies during rhinoplasty usually rely on the surgeon's instinct to decide on the amount and direction of force applied.
  • The study aimed to identify when fractures occur and when the osteotome hits the thicker frontal bone by using an instrumented hammer to record impact forces on human specimens.
  • A machine learning algorithm successfully predicted fracture occurrences and the proximity to the frontal bone with high accuracy rates (up to 93%) and provided real-time feedback for surgeons.
View Article and Find Full Text PDF

Osteotomies are common surgical procedures used for instance in rhinoplasty and usually performed using an osteotome impacted by a mallet. Visual control being difficult, osteotomies are often based on the surgeon proprioception to determine the number and energy of each impact. The aim of this study is to determine whether a hammer instrumented with a piezoelectric force sensor can be used to (i) follow the displacement of the osteotome and (ii) determine when the tip of the osteotome arrives in frontal bone, which corresponds to the end of the osteotomy pathway.

View Article and Find Full Text PDF

Anabolic-androgenic steroids (AASs) are a large group of molecules including endogenously produced androgens, such as testosterone, as well as synthetically manufactured derivatives. AAS use is widespread due to their ability to improve muscle growth for aesthetic purposes and athletes' performance, minimizing androgenic effects. AAS use is very popular and 1-3% of US inhabitants have been estimated to be AAS users.

View Article and Find Full Text PDF

Androgens play a significant role in the development of male reproductive organs. The clinical use of synthetic testosterone derivatives, such as nandrolone, is focused on maximizing the anabolic effects and minimizing the androgenic ones. Class II anabolic androgenic steroids (AAS), including nandrolone, are rapidly becoming a widespread group of drugs used both clinically and illicitly.

View Article and Find Full Text PDF

The interphase joining tendon to bone plays the crucial role of integrating soft to hard tissues, by effectively transferring stresses across two tissues displaying a mismatch in mechanical properties of nearly two orders of magnitude. The outstanding mechanical properties of this interphase are attributed to its complex hierarchical structure, especially by means of competing gradients in mineral content and collagen fibers organization at different length scales. The goal of this study is to develop a multiscale model to describe how the tendon-to-bone insertion derives its overall mechanical behavior.

View Article and Find Full Text PDF

Background: The success of cementless hip arthroplasty depends on the primary stability of the femoral stem. It remains difficult to assess the optimal number of impacts to guarantee the femoral stem stability while avoiding bone fracture. The aim of this study is to validate a method using a hammer instrumented with a force sensor to monitor the insertion of femoral stem in bovine femoral samples.

View Article and Find Full Text PDF

Performing an osteotomy with a surgical mallet and an osteotome is a delicate intervention mostly based on the surgeon proprioception. It remains difficult to assess the properties of bone tissue being osteotomized. Mispositioning of the osteotome or too strong impacts may lead to bone fractures which may have dramatic consequences.

View Article and Find Full Text PDF

The success of cementless hip arthroplasty depends on the primary stability of the femoral stem (FS). It remains difficult to assess the optimal impaction energy to guarantee the FS stability while avoiding bone fracture. The aim of this study is to compare the results of a method based on the use of an instrumented hammer to determine the insertion endpoint of cementless FS in a cadaveric model with two other methods using i) the surgeon proprioception and ii) video motion tracking.

View Article and Find Full Text PDF

The primary stability of the femoral stem (FS) implant determines the surgical success of cementless hip arthroplasty. During the insertion, a compromise must be found for the number and energy of impacts that should be sufficiently large to obtain an adapted primary stability of the FS and not too high to decrease fracture risk. The aim of this study is to determine whether a hammer instrumented with a force sensor can be used to monitor the insertion of FS.

View Article and Find Full Text PDF

Background: The acetabular cup (AC) implant primary stability is an important determinant for the success of cementless hip surgery but it remains difficult to assess the AC implant fixation in the clinic. A method based on the analysis of the impact produced by an instrumented hammer on the ancillary has been developed by our group (Michel et al., 2016a).

View Article and Find Full Text PDF

Introduction: The MRI evidence of persistent black holes (pBHs) on T1-weighted images reflects brain tissue loss in multiple sclerosis (MS). The evolution of contrast-enhancing lesions (CELs) into pBHs probably depends on the degree and persistence of focal brain inflammation. The aim of our retrospective study was to evaluate the effect of a single cycle of intravenous methylprednisolone (IVMP), as for MS relapse treatment, on the risk of CELs' evolution into pBHs.

View Article and Find Full Text PDF