Publications by authors named "Roshni Sara Babu"

While moderately activated microglia in Alzheimer's disease (AD) are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations reported that the elimination of ~80% of microglia through inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration. Furthermore, prolonged CSF1R inhibition diminished the development of parenchymal plaques.

View Article and Find Full Text PDF

Chronic neuroinflammation represents a prominent hallmark of Alzheimer's disease (AD). While moderately activated microglia are pivotal in clearing amyloid beta (Aβ), hyperactivated microglia perpetuate neuroinflammation. Prior investigations have indicated that the elimination of ∼80% of microglia through a month-long inhibition of the colony-stimulating factor 1 receptor (CSF1R) during the advanced stage of neuroinflammation in 5xFamilial AD (5xFAD) mice mitigates synapse loss and neurodegeneration without impacting Aβ levels.

View Article and Find Full Text PDF

Background: One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes.

View Article and Find Full Text PDF