Dinucleoside polyphosphates act as agonists on purinergic P2Y receptors to mediate a variety of cellular processes. Symmetrical, naturally occurring purine dinucleotides are found in most living cells and their actions are generally known. Unsymmetrical purine dinucleotides and all pyrimidine containing dinucleotides, however, are not as common and therefore their actions are not well understood.
View Article and Find Full Text PDFPlatelet P2Y12 receptors play a central role in the regulation of platelet function and inhibition of this receptor by treatment with drugs such as clopidogrel results in a reduction of atherothrombotic events. We discovered that modification of natural and synthetic dinucleoside polyphosphates and nucleotides with lipophilic substituents on the ribose and base conferred P2Y12 receptor antagonist properties to these molecules producing potent inhibitors of ADP-mediated platelet aggregation. We describe methods for the preparation of these functionalized dinucleoside polyphosphates and nucleotides and report their associated activities.
View Article and Find Full Text PDFADP is the cognate agonist of the P2Y1, P2Y12, and P2Y13 receptors. With the goal of identifying a high potency agonist that selectively activates the P2Y1 receptor, we examined the pharmacological selectivity of the conformationally constrained non-nucleotide analog (N)-methanocarba-2MeSADP [(1'S,2'R, 3'S,4'R,5'S)-4-[(6-amino-2-methylthio-9H-purin-9-yl)-1-diphosphoryloxymethyl]bicyclo[3.1.
View Article and Find Full Text PDF