Clin Cosmet Investig Dermatol
May 2023
Introduction: is a native plant used in traditional medicine by First Nations peoples in Australia to treat inflammation. In our previous study, an optimised seed oil (CSO) nanoemulsion (NE) showed improved biomedical activities such as antimicrobial, antioxidant activity, cell viability and in vitro wound healing efficacy compared to CSO.
Methods: In this study, a stable NE formulation combining water extract (TSWE) and CSO in a nanoemulsion (CTNE) was prepared to integrate the bioactive compounds in both native plants and improve wound healing efficacy.
BMC Complement Med Ther
November 2022
Background: Efficient delivery systems of Calophyllum inophyllum seed oil (CSO) in the form of nanoemulsion were optimised to enhance its stability and ensure its therapeutic efficiency as a potential agent for various biomedical applications.
Method: Response Surface Methodology (RSM) was used to determine the effects of independent variables (oil, surfactant, water percentage and homogenisation time) on physicochemical characteristics, including droplet size, polydispersity index and turbidity.
Results: The optimised CSO nanoemulsion (CSONE) has a 46.
Green nanotechnology plays a significant role in developing effective treatment strategies for numerous diseases. The biological synthesis of metal nanoparticles (M-NPs) possesses suitable alternatives than chemical techniques. Using plant extract to synthesis M-NPs is an eco-friendly, non-toxic, and cost-effective that are suitable for biological applications and efforts are directed to explore the efficacy of these materials in cancer management.
View Article and Find Full Text PDFIntroduction: In the present research, we report a quick and green synthesis of magnetite nanoparticles (FeO-NPs) in aqueous solution using ferric and ferrous chloride, with different percentages of natural honey (0.5%, 1.0%, 3.
View Article and Find Full Text PDFHuman papillomavirus (HPV) is one of the most common sexually transmitted disease, transmitted through intimate skin contact or mucosal membrane. The HPV virus consists of a double-stranded circular DNA and the role of HPV virus in cervical cancer has been studied extensively. Thus it is critical to develop rapid identification method for early detection of the virus.
View Article and Find Full Text PDFRice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II).
View Article and Find Full Text PDFModified rice straw/Fe3O4/polycaprolactone nanocomposites (ORS/Fe3O4/ PCL-NCs) have been prepared for the first time using a solution casting method. The RS/Fe3O4-NCs were modified with octadecylamine (ODA) as an organic modifier. The prepared NCs were characterized by using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR).
View Article and Find Full Text PDFFe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated.
View Article and Find Full Text PDFSmall sized magnetite iron oxide nanoparticles (Fe3O4-NPs) with were successfully synthesized on the surface of rice straw using the quick precipitation method in the absence of any heat treatment. Ferric chloride (FeCl3·6H2O), ferrous chloride (FeCl2·4H2O), sodium hydroxide (NaOH) and urea (CH4N2O) were used as Fe3O4-NPs precursors, reducing agent and stabilizer, respectively. The rice straw fibers were dispersed in deionized water, and then urea was added to the suspension, after that ferric and ferrous chloride were added to this mixture and stirred.
View Article and Find Full Text PDFThe aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe(3)O(4)) nanoparticles on talc layers using an environmentally friendly process. The Fe(3)O(4) magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe(3)O(4) precursor and reducing agent in talc.
View Article and Find Full Text PDF