The current study aims to establish a novel ultra-deformable vesicular system to enhance the drug penetration across the skin by preparing the ketoconazole-loaded menthosomes. It was achieved through regular thin-film evaporation & hydration techniques. To examine the effect of formulation parameters on menthosome characteristics, a 2 full factorial design was used using Design-Expert® software.
View Article and Find Full Text PDFThe emergence of as a potential threat in persistent infections can be attributed to the plethora of virulence factors expressed by it. This review discusses the various virulence factors that help this pathogen to establish an infection and regulatory systems controlling these virulence factors. Cell-associated virulence factors such as flagella, type IV pili and non-pilus adhesins have been reviewed.
View Article and Find Full Text PDFThe present study is aimed at enhancing the skin penetration of ketoconazole by formulating it as transethosome. Ketoconazole-loaded transethosome formulations were prepared by conventional thin film evaporation and hydration method and were optimized using concentration of edge activator (span 80), ethanol and sonication time as factors and particle size, polydispersity index and entrapment efficiency as responses. The optimized formulation was further evaluated for in vitro diffusion, anti-fungal activity, ex vivo penetration and in vivo pharmacodynamic activity.
View Article and Find Full Text PDF