During β-adrenergic stimulation, cardiac troponin I (cTnI) is phosphorylated by protein kinase A (PKA) at sites S23/S24, located at the N-terminus of cTnI. This phosphorylation has been shown to decrease KCa and pCa50, and weaken the cTnC-cTnI (C-I) interaction. We recently reported that phosphorylation results in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow), which speeds up the overall relaxation.
View Article and Find Full Text PDFCardiac myosin-binding protein C (cMyBP-C) is a thick-filament-associated protein that modulates cardiac contractility through interactions of its N-terminal immunoglobulin (Ig)-like C0-C2 domains with actin and/or myosin. These interactions are modified by the phosphorylation of at least four serines located within the motif linker between domains C1 and C2. We investigated whether motif phosphorylation alters its mechanical properties by characterizing force-extension relations using atomic force spectroscopy of expressed mouse N-terminal cMyBP-C fragments (i.
View Article and Find Full Text PDFThe structural role of the unique myosin-binding motif (m-domain) of cardiac myosin-binding protein-C remains unclear. Functionally, the m-domain is thought to directly interact with myosin, whereas phosphorylation of the m-domain has been shown to modulate interactions between myosin and actin. Here we utilized NMR to analyze the structure and dynamics of the m-domain in solution.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2008
We review development of evidence and current perceptions of the multiple and significant functions of cardiac troponin I in regulation and modulation of cardiac function. Our emphasis is on the unique structure function relations of the cardiac isoform of troponin I, especially regions containing sites of phosphorylation. The data indicate that modifications of specific regions cardiac troponin I by phosphorylations either promote or reduce cardiac contractility.
View Article and Find Full Text PDFCardiac troponin I (cTnI) phosphorylation modulates myocardial contractility and relaxation during beta-adrenergic stimulation. cTnI differs from the skeletal isoform in that it has a cardiac specific N' extension of 32 residues (N' extension). The role of the acidic N' region in modulating cardiac contractility has not been fully defined.
View Article and Find Full Text PDFWe present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30).
View Article and Find Full Text PDFAdrenergic stimulation induces positive changes in cardiac contractility and relaxation. Cardiac troponin I is phosphorylated at different sites by protein kinase A and protein kinase C, but the effects of these post-translational modifications on the rate and extent of contractility and relaxation during beta-adrenergic stimulation in the intact animal remain obscure. To investigate the effect(s) of complete and chronic cTnI phosphorylation on cardiac function, we generated transgenic animals in which the five possible phosphorylation sites were replaced with aspartic acid, mimicking a constant state of complete phosphorylation (cTnI-AllP).
View Article and Find Full Text PDFProtein kinase C phosphorylation of cardiac troponin, the Ca(2+)-sensing switch in muscle contraction, is capable of modulating the response of cardiac muscle to a Ca(2+) ion concentration. The N-domain of cardiac troponin I contains two protein kinase C phosphorylation sites. Although the physiological consequences of phosphorylation at Ser(43)/Ser(45) are known, the molecular mechanisms responsible for these functional changes have yet to be established.
View Article and Find Full Text PDFCardiac troponin C (cTnC) is the Ca(2+)-binding component of the troponin complex and, as such, is the Ca(2+)-dependent switch in muscle contraction. This protein consists of two globular lobes, each containing a pair of EF-hand metal-binding sites, connected by a linker. In the N lobe, Ca(2+)-binding site I is inactive and Ca(2+)-binding site II is primarily responsible for initiation of muscle contraction.
View Article and Find Full Text PDFThe effects of the Ca(2+) sensitizer levosimendan and that of its stereoisomer dextrosimendan on the cardiac contractile apparatus were studied using skinned fibers obtained from guinea pig hearts. Levosimendan was found to be more effective than dextrosimendan in this model. The respective concentrations of levosimendan and dextrosimendan at EC(50) were 0.
View Article and Find Full Text PDFSmall-angle neutron scattering with contrast variation has been used to determine the shapes and dispositions of the three subunits of cardiac troponin and to study the influence of phosphorylation on the structure. Three contrast variation series were collected on three different isotopically labeled variants of the cTnC/cTnI/cTnT(198-298) complex, one of which contained deuterated and bisphosphorylated cTnI. Analysis of the scattering data shows cTnT(198-298) interacting with a single lobe of a somewhat compacted cTnC that sits at one end of an elongated rodlike cTnI, covering about one-third of its length.
View Article and Find Full Text PDFWe have investigated the structure of the cTnC-cTnI-cTnT(198-298) calcium-saturated, ternary cardiac troponin complex by small-angle scattering with contrast variation. Shape restoration was also applied to the scattering information resulting from the deuterated cTnC subunit, the unlabeled cTnI-cTnT(198-298) subunits, and the entire complex. The experimental results and modeling indicate that cTnC adopts a partially collapsed conformation, while the cTnI-cTnT(198-298) components have an extended, rod-like structure.
View Article and Find Full Text PDFRecognition and identification of protein folds is a prerequisite for high-throughput structural genomics. Here we demonstrate a simple protocol for covalent attachment of a short and more rigid metal-chelating tag, thiol-reactive EDTA, by chemical modification of the single cysteine residue in barnase(H102C). Conjugation of the metal-chelating tag provides the advantage of allowing a greater range of paramagnetic metal substitutions.
View Article and Find Full Text PDFCardiac troponin C (TnC) is composed of two globular domains connected by a flexible linker. In solution, linker flexibility results in an ill defined orientation of the two globular domains relative to one another. We have previously shown a decrease in linker flexibility in response to cardiac troponin I (cTnI) binding.
View Article and Find Full Text PDFWe have investigated the binding of bepridil to calcium-saturated cardiac troponin C in a cardiac troponin C/troponin I complex. Nuclear magnetic resonance spectroscopy and [(15)N,(2)H]cardiac troponin C permitted the mapping of bepridil-induced amide proton chemical shifts. A single bepridil-binding site in the regulatory domain was found with an affinity constant of approximately 140 microM(-1).
View Article and Find Full Text PDFMultidimensional heteronuclear magnetic resonance studies of the cardiac troponin C/troponin I(1-80)/troponin I(129-166) complex demonstrated that cardiac troponin I(129-166), corresponding to the adjacent inhibitory and regulatory regions, interacts with and induces an opening of the cardiac troponin C regulatory domain. Chemical shift perturbation mapping and (15)N transverse relaxation rates for intact cardiac troponin C bound to either cardiac troponin I(1-80)/troponin I(129-166) or troponin I(1-167) suggested that troponin I residues 81-128 do not interact strongly with troponin C but likely serve to modulate the interaction of troponin I(129-166) with the cardiac troponin C regulatory domain. Chemical shift perturbations due to troponin I(129-166) binding the cardiac troponin C/troponin I(1-80) complex correlate with partial opening of the cardiac troponin C regulatory domain previously demonstrated by distance measurements using fluorescence methodologies.
View Article and Find Full Text PDFLevosimendan is an inodilatory drug that mediates its cardiac effect by the calcium sensitization of contractile proteins. The target protein of levosimendan is cardiac troponin C (cTnC). In the current work, we have studied the interaction of levosimendan with Ca(2+)-saturated cTnC by heteronuclear NMR and small angle x-ray scattering.
View Article and Find Full Text PDFWe introduce a new simple methodology allowing the measurement of (1)H-(15)N residual dipolar couplings, dipolar shifts, and unpaired electron-amide proton distances. This method utilizes a zinc finger tag fused at either the N- or the C-terminus of a protein. We have demonstrated this fusion strategy by incorporating the zinc finger of the retroviral gag protein onto the C-terminus of barnase, a ribonuclease produced by Bacillus amiloliquifaciance.
View Article and Find Full Text PDFSeveral HNCO-based three-dimensional experiments are described for the measurement of 13C'(i - 1)-13Calpha(i - 1), 5N(i)-13C'(i - 1), 15N(i)-13Calpha(i), 15N(i)-13Calpha(i - 1), 1H(N)(i)-13Calpha(i), 1H(N)(i)-13Calpha(i - 1), and 13Calpha(i - 1)-13Cbeta(i - 1) scalar and dipolar couplings in 15N, 13C, (2H)-labelled protein samples. These pulse sequences produce spin-state edited spectra superficially resembling an HNCO correlation spectrum, allowing accurate and simple measurement of couplings without introducing additional spectral crowding. Scalar and dipolar couplings are measured with good sensitivity from relatively large proteins, as demonstrated with three proteins: cardiac Troponin C, calerythrin and ubiquitin.
View Article and Find Full Text PDFJ Mol Cell Cardiol
August 2000
Understanding the process of Ca(2+)/Mg(2+)exchange during muscle excitation and relaxation is fundamental to elucidating the mechanism of Ca(2+)-regulated muscle contraction. During the resting phase, the C-domain of cardiac troponin C may be occupied by either Ca(2+)or Mg(2+). Here, complexes of recombinant cardiac troponin C(81-161) and the N terminus of cardiac troponin I, representing residues 33-80, were generated in the presence of saturating Mg(2+).
View Article and Find Full Text PDFPreviously, we utilized (15)N transverse relaxation rates to demonstrate significant mobility in the linker region and conformational exchange in the regulatory domain of Ca(2+)-saturated cardiac troponin C bound to the isolated N-domain of cardiac troponin I (Gaponenko, V., Abusamhadneh, E., Abbott, M.
View Article and Find Full Text PDFWe describe a simple experimental approach for the rapid determination of protein global folds. This strategy utilizes site-directed spin labeling (SDSL) in combination with isotope enrichment to determine long-range distance restraints between amide protons and the unpaired electron of a nitroxide spin label using the paramagnetic effect on relaxation rates. The precision and accuracy of calculating a protein global fold from only paramagnetic effects have been demonstrated on barnase, a well-characterized protein.
View Article and Find Full Text PDFCardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region.
View Article and Find Full Text PDF