Publications by authors named "Rosenstiel P"

Article Synopsis
  • - During pregnancy and lactation, mammals experience significant changes in their intestinal epithelium, leading to an increase in intestinal surface area through the expansion of villi.
  • - The RANK-RANKL molecular pathway is crucial for this process, protecting gut cells from death and promoting intestinal stem cell activity, which results in villous elongation.
  • - Mice lacking RANK in their intestinal epithelium have offspring that are heavier and more prone to glucose intolerance, highlighting the importance of RANK-RANKL in both immediate and long-term health outcomes for offspring.
View Article and Find Full Text PDF

Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease.

View Article and Find Full Text PDF

Background: Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 10 cases revealed that this translocation connects the interferon regulatory factor 4 (IRF4) gene on chromosome 6 with the regulator of chromosome condensation 1 (RCC1) gene on chromosome 1, resulting in fusion transcripts.
  • * Despite the fusion, the expression levels of RCC1 and IRF4 proteins remained normal, and the cases also displayed typical mutations related to CLL, suggesting a linkage with the IGHV-unmutated subtype.
View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is associated with perturbed metabolism of the essential amino acid tryptophan (Trp). Whether increased degradation of Trp directly fuels mucosal inflammation or acts as a compensatory attempt to restore cellular energy levels via nicotinamide adenine dinucleotide (NAD ) synthesis is not understood. Employing a systems medicine approach on longitudinal IBD therapy intervention cohorts and targeted screening in preclinical IBD models, we discover that steady increases in Trp levels upon therapy success coincide with a rewiring of metabolic processes within the kynurenine pathway (KP).

View Article and Find Full Text PDF

In the distal colon, mucus secreting goblet cells primarily confer protection from luminal microorganisms via generation of a sterile inner mucus layer barrier structure. Bacteria-sensing sentinel goblet cells provide a secondary defensive mechanism that orchestrates mucus secretion in response to microbes that breach the mucus barrier. Previous reports have identified mucus barrier deficiencies in adult germ-free mice, thus implicating a fundamental role for the microbiota in programming mucus barrier generation.

View Article and Find Full Text PDF

Introduction: Patients with inflammatory bowel disease (IBD) are predisposed to the reactivation of viral infections such as cytomegalovirus (CMV). Clinical discrimination of disease flares and colonic CMV reactivation is difficult in patients with established diagnosis of IBD, and there are no reliable noninvasive diagnostic tools yet. Furthermore, the influence of novel therapeutics including biologicals and Janus kinase inhibitors on the risk of CMV colitis is unclear.

View Article and Find Full Text PDF

Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood.

View Article and Find Full Text PDF
Article Synopsis
  • Circulating tumor cells (CTCs) are critical for understanding tumor diversity and treatment resistance, but traditional methods often capture low numbers, especially in non-small cell lung cancer (NSCLC).
  • This study utilized diagnostic leukapheresis (DLA) on six advanced NSCLC patients to access larger blood volumes and employed a new two-step method to enrich CTCs for analysis.
  • The results unveiled 3,363 unique CTC transcriptomes, revealing significant heterogeneity and potential distinct phenotypes, which suggests CTCs can serve as valuable indicators for tumor monitoring and targeted therapies in the future.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists are developing a new method called FixNCut to help study tiny cells better!
  • This method helps keep the cells' important information safe during processing, which can make research results more reliable!
  • FixNCut can be used with different types of studies, so it’s a helpful tool for looking at cells from humans and mice!
View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory bowel diseases (IBD) cause long-lasting inflammation in the digestive system, and scientists are looking into how stress inside cells (called ER stress) affects this.
  • They found that when cells experience ER stress, the way they use certain nutrients changes, which might affect how severe IBD is and how well treatments work.
  • The researchers discovered that not having enough of a nutrient called serine can mess up a signaling system that helps cells fight infections, but giving antioxidants can help improve this issue.
View Article and Find Full Text PDF

Background: Chronic inflammatory diseases (CIDs) are systems disorders that affect diverse organs including the intestine, joints and skin. The essential amino acid tryptophan (Trp) can be broken down to various bioactive derivatives important for immune regulation. Increased Trp catabolism has been observed in some CIDs, so we aimed to characterise the specificity and extent of Trp degradation as a systems phenomenon across CIDs.

View Article and Find Full Text PDF

Background: The pathobiology of the non-destructive inflammatory bowel disease (IBD) lymphocytic colitis (LC) is poorly understood. We aimed to define an LC-specific mucosal transcriptome to gain insight into LC pathology, identify unique genomic signatures, and uncover potentially druggable disease pathways.

Methods: We performed bulk RNA-sequencing of LC and collagenous colitis (CC) colonic mucosa from patients with active disease, and healthy controls (n = 4-10 per cohort).

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a persistent inflammatory condition that affects the gastrointestinal tract and presents significant challenges in its management and treatment. Despite the knowledge that within-host bacterial evolution occurs in the intestine, the disease has rarely been studied from an evolutionary perspective. In this study, we aimed to investigate the evolution of resident bacteria during intestinal inflammation and whether- and how disease-related bacterial genetic changes may present trade-offs with potential therapeutic importance.

View Article and Find Full Text PDF

Chronic inflammatory diseases (CIDs), including inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) are thought to emerge from an impaired complex network of inter- and intracellular biochemical interactions among several proteins and small chemical compounds under strong influence of genetic and environmental factors. CIDs are characterised by shared and disease-specific processes, which is reflected by partially overlapping genetic risk maps and pathogenic cells (e.g.

View Article and Find Full Text PDF

Diets that restrict caloric or protein intake offer a variety of benefits, including decreasing the incidence of cancer. However, whether such diets pose a substantial therapeutic benefit as auxiliary cancer treatments remains unclear. We determined the effects of severe protein depletion on tumorigenesis in a Drosophila melanogaster intestinal tumor model, using a human RAF gain-of-function allele.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are highly reactive molecules formed from diatomic oxygen. They act as cellular signals, exert antibiotic activity towards invading microorganisms, but can also damage host cells. Dual oxidase 2 (DUOX2) is the main ROS-producing enzyme in the intestine, regulated by cues of the commensal microbiota and functions in pathogen defense.

View Article and Find Full Text PDF

Amino acid auxotrophies are prevalent among bacteria. They can govern ecological dynamics in microbial communities and indicate metabolic cross-feeding interactions among coexisting genotypes. Despite the ecological importance of auxotrophies, their distribution and impact on the diversity and function of the human gut microbiome remain poorly understood.

View Article and Find Full Text PDF

Background: Crohn's disease (CD) is a complex and poorly understood myeloid-mediated disorder. Genetic variants with loss of function in the gene confer an increased susceptibility to ileal CD. While Nod2 in myeloid cells may confer protection against T-cell mediated ileopathy, it remains unclear whether it may promote resolution of the inflamed colon.

View Article and Find Full Text PDF

Antibiotics, by definition, reduce bacterial growth rates in optimal culture conditions; however, the real-world environments bacteria inhabit see rapid growth punctuated by periods of low nutrient availability. How antibiotics mediate population decline during these periods is poorly understood. Bacteria cannot optimize for all environmental conditions because a growth-longevity tradeoff predicts faster growth results in faster population decline, and since bacteriostatic antibiotics slow growth, they should also mediate longevity.

View Article and Find Full Text PDF

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles.

View Article and Find Full Text PDF

In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Clara cell 16-kDa protein (CC16) is an important anti-inflammatory protein in the lungs, but its levels are reduced in obese individuals, prompting a broader study on its relationship with cardio-metabolic health.
  • This study examined CC16 in serum samples from multiple cohorts and found factors like obesity, hypertension, and certain medications impact CC16 levels significantly.
  • Results showed that certain gene mutations and lifestyle factors decrease CC16, while some medications and chronic heart conditions can increase its levels, highlighting the complex interactions between CC16, obesity, and cardiovascular health.
View Article and Find Full Text PDF