Publications by authors named "Rosenmund C"

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

The bimolecular fluorescence complementation (BiFC) technique is a powerful tool for visualizing protein-protein interactions in vivo. It involves genetically fused nonfluorescent fragments of green fluorescent protein (GFP) or its variants to the target proteins of interest. When these proteins interact, the GFP fragments come together, resulting in the reconstitution of a functional fluorescent protein complex that can be observed using fluorescence microscopy.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

Synaptic vesicles (SVs) store and transport neurotransmitters to the presynaptic active zone for release by exocytosis. After release, SV proteins and excess membrane are recycled via endocytosis, and new SVs can be formed in a clathrin-dependent manner. This process maintains complex molecular composition of SVs through multiple recycling rounds.

View Article and Find Full Text PDF

The Ca sensor synaptotagmin-1 (Syt1) triggers neurotransmitter release together with the neuronal sensitive factor attachment protein receptor (SNARE) complex formed by syntaxin-1, SNAP25, and synaptobrevin. Moreover, Syt1 increases synaptic vesicle (SV) priming and impairs spontaneous vesicle release. The Syt1 CB domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of Syt1 and the mechanism underlying Ca triggering of release are unknown.

View Article and Find Full Text PDF

Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.

View Article and Find Full Text PDF
Article Synopsis
  • The release of neurotransmitters at synapses relies on a series of protein interactions, particularly involving complexins, which play a role in regulating synaptic transmission.
  • Research on the N-terminus of complexin II, focusing on its hydrophobic amino acids, shows that preserving this property supports its stimulatory function, while changes disrupt neurotransmitter release.
  • Specific mutations in the N-terminus, particularly residue changes, can enhance spontaneous release but negatively affect evoked release, highlighting the importance of precise amino acid composition in managing synaptic neurotransmitter dynamics.
View Article and Find Full Text PDF

The Ca sensor synaptotagmin-1 triggers neurotransmitter release together with the neuronal SNARE complex formed by syntaxin-1, SNAP25 and synaptobrevin. Moreover, synaptotagmin-1 increases synaptic vesicle priming and impairs spontaneous vesicle release. The synaptotagmin-1 CB domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of synaptotagmin-1, and the mechanism underlying Ca-triggering of release is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Neurotransmitter release happens quickly through the interaction of calcium (Ca) with Synaptotagmin-1 and the formation of SNARE complexes, but how these interactions lead to membrane fusion is still unclear.
  • Synaptotagmin-1's Ca-binding loops were thought to help merge membranes, but new simulations show they might actually hinder SNARE function, contradicting older models.
  • Recent experiments suggest that when Ca binds to Synaptotagmin-1, it reorients the protein in a way that aids in bringing SNARE complexes together for membrane fusion, acting like a lever to enhance the process.
View Article and Find Full Text PDF

The mammalian neocortex comprises an enormous diversity regarding cell types, morphology, and connectivity. In this work, we discover a post-transcriptional mechanism of gene expression regulation, protein translation, as a determinant of cortical neuron identity. We find specific upregulation of protein synthesis in the progenitors of later-born neurons and show that translation rates and concomitantly protein half-lives are inherent features of cortical neuron subtypes.

View Article and Find Full Text PDF
Article Synopsis
  • SNARE proteins (syntaxin-1, SNAP-25, synaptobrevin) play a crucial role in rapidly releasing neurotransmitters by forming complexes that fuse synaptic vesicles with cell membranes within microseconds.* -
  • Current theories suggest that these proteins work mechanically like rods, zipping together to bring membranes closer, but the exact mechanism of fast fusion is still unclear.* -
  • Molecular dynamics simulations propose a new model where the zippering of SNARE helices initiates fusion at a local level, expanding hydrophobic regions to form fusion pores, and indicates that polyunsaturated lipids might enhance the efficiency of this process.*
View Article and Find Full Text PDF
Article Synopsis
  • The SNARE proteins are vital for neurotransmitter release at synapses, but their exact role in managing both rapid release and vesicle availability is still not fully understood.
  • Researchers created chimeric proteins by swapping parts of the SNARE domain between two proteins, STX1A and STX2, to study these functions in mouse neurons lacking STX1.
  • Results showed that changes in the C-terminal segment of the SNARE domain influenced the readily releasable pool of vesicles and the speed of neurotransmitter release, highlighting its importance in synaptic function.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of complexin II (Cpx) in regulating neurotransmitter release at central synapses, focusing specifically on its N-terminal region (amino acids 1-27) which plays a critical role in both stimulating and inhibiting synaptic transmission.
  • - Through experiments such as mutagenesis and membrane fusion assays, the research reveals that the hydrophobic characteristics of the N-terminus are important for enhancing spontaneous neurotransmitter release, while alterations in specific amino acids can impair evoked release and affect the release pool size.
  • - The findings highlight the nuanced functions of Cpx in synaptic activity, emphasizing its effect on the balance between spontaneous and evoked neurotransmitter release in mouse hippocampal neurons.
View Article and Find Full Text PDF

Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized.

View Article and Find Full Text PDF

Optical report of neurotransmitter release allows visualisation of excitatory synaptic transmission. Sensitive genetically-encoded fluorescent glutamate reporters operating with a range of affinities and emission wavelengths are available. However, without targeting to synapses, the specificity of the fluorescent signal is uncertain, compared to sensors directed at vesicles or other synaptic markers.

View Article and Find Full Text PDF

Cholesterol is crucial for neuronal synaptic transmission, assisting in the molecular and structural organization of lipid rafts, ion channels, and exocytic proteins. Although cholesterol absence was shown to result in impaired neurotransmission, how cholesterol locally traffics and its route of action are still under debate. Here, we characterized the lipid transfer protein ORP2 in murine hippocampal neurons.

View Article and Find Full Text PDF

Autoantibodies against central nervous system proteins are increasingly being recognized in association with neurologic disorders. Although a growing number of neural autoantibodies have been identified, a causal link between specific autoantibodies and disease symptoms remains unclear, as most studies use patient-derived CSF-containing mixtures of autoantibodies. This raises questions concerning mechanism of action and which autoantibodies truly contribute to disease progression.

View Article and Find Full Text PDF
Article Synopsis
  • - Dynamin is crucial for vesicle fission during endocytosis, with typical dynamics taking seconds, but neurons can achieve ultrafast endocytosis in just 50 ms.
  • - The study shows that a splice variant called Dynamin 1xA is pre-recruited to endocytic sites, aided by its interaction with Syndapin 1, leading to the formation of dynamic molecular condensates on the plasma membrane.
  • - Disruption of the interaction between Dynamin 1xA and Syndapin 1 prevents these condensates from forming, resulting in a significant slowdown of endocytosis, highlighting Syndapin 1's role as an adaptor that speeds up this process at synapses.
View Article and Find Full Text PDF

SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A's JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A's JMD; and (3) palmitoylation deficiency mutations in STX1A's TMD.

View Article and Find Full Text PDF

Anti-NMDA receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder associated with autoantibodies against NMDARs, which cause a variety of symptoms from prominent psychiatric and cognitive manifestations to seizures and autonomic instability. Previous studies mainly focused on hippocampal effects of these autoantibodies, helping to explain mechanistic causes for cognitive impairment. However, antibodies' effects on higher cortical network function, where they could contribute to psychosis and/or seizures, have not been explored in detail until now.

View Article and Find Full Text PDF

Synaptotagmin-1 (SYT1) is a synaptic vesicle resident protein that interacts via its C2 domain with anionic lipids from the plasma membrane in a calcium-dependent manner to efficiently trigger rapid neurotransmitter (NT) release. In addition, SYT1 acts as a negative regulator of spontaneous NT release and regulates synaptic vesicle (SV) priming. How these functions relate to each other mechanistically and what role other synaptotagmin (SYT) isoforms play in supporting and complementing the role of SYT1 is still under intensive investigation.

View Article and Find Full Text PDF
Article Synopsis
  • * Specific point mutations (K603E and R769E) in the polybasic face of the CCB region significantly hinder liposome bridging and priming of synaptic vesicles, indicating their key role in vesicle release.
  • * The study underscores that two separate orientations of the C-CB region affect neurotransmitter release and presynaptic plasticity, with a dominant impact from the K603E and R769E mutations.
View Article and Find Full Text PDF

Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX1's closed conformation driven by its H- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial.

View Article and Find Full Text PDF

Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons.

View Article and Find Full Text PDF

Cannabis and cannabinoid drugs are central agents that are used widely recreationally and are employed broadly for treating psychiatric conditions. Cannabinoids primarily act by stimulating presynaptic CB1 receptors (CB1Rs), the most abundant G-protein-coupled receptors in brain. CB1R activation decreases neurotransmitter release by inhibiting presynaptic Ca channels and induces long-term plasticity by decreasing cellular cAMP levels.

View Article and Find Full Text PDF