Publications by authors named "Rosenhauer A"

Article Synopsis
  • Childhood trauma increases the risk of neuropsychiatric disorders like PTSD, autism, and ADHD, with a focus on how gene-environment interactions might explain this connection.
  • A study found that women exposed to interpersonal violence during adolescence showed unique protein changes linked to Merkel cells, which are important for skin sensations, indicating a specific vulnerability during this developmental stage.
  • Future research may uncover mechanisms related to sensory changes after trauma and could lead to new therapies that focus on touch, such as massage or ultrasound treatments.
View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a debilitating neuropsychiatric disorder that follows exposure to a traumatic event; however, not every person who experiences trauma will develop PTSD. Women are more likely to be diagnosed with PTSD than men even when controlling for type and amount of trauma exposure. Circulating levels of gonadal hormones such as estradiol, progesterone, and testosterone may contribute to differential risk for developing PTSD.

View Article and Find Full Text PDF

Social stress exacerbates anxious and depressive behaviors in humans. Similarly, anxiety- and depressive-like behaviors are triggered by social stress in a variety of non-human animals. Here, we tested whether oral administration of the putative anxiolytic probiotic strains Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces the striking increase in anxiety-like behavior and changes in gut microbiota observed following social defeat stress in Syrian hamsters.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is known to promote fear learning as well as avoidant behavioral responses to chronic social defeat stress, but, conversely, this peptide can also have antidepressant effects and can reduce depressant-like symptoms such as social avoidance. The purpose of this study was to use a variety of approaches to determine whether BDNF acting on tropomyosin receptor kinase B (TrkB) promotes or prevents avoidant phenotypes in hamsters and mice that have experienced acute social defeat stress. We utilized systemic and brain region-dependent manipulation of BDNF signaling before or immediately following social defeat stress in Syrian hamsters, TrkB knock-in mice, and C57Bl/6J mice and measured the subsequent behavioral response to a novel opponent.

View Article and Find Full Text PDF

The basolateral amygdala (BLA) is a critical nucleus mediating behavioral responses after exposure to acute social conflict. Male and female Syrian hamsters both readily establish a stable dominant-subordinate relationship among same-sex conspecifics, and the goal of the current study was to determine potential underlying genetic mechanisms in the BLA facilitating the establishment of social hierarchy. We sequenced the BLA transcriptomes of dominant, subordinate, and socially neutral males and females, and using de novo assembly techniques and gene network analyses, we compared these transcriptomes across social status within each sex.

View Article and Find Full Text PDF

Syrian hamsters readily display territorial aggression. If they lose even a single agonistic encounter, however, hamsters show striking reductions in aggressive behavior and increases in submissive behavior, a distinct behavioral change that we have previously termed conditioned defeat. This acute social defeat stressor is primarily psychological and is effective in both males and females.

View Article and Find Full Text PDF

Histone acetylation has emerged as a critical factor regulating learning and memory both during and after exposure to stressful stimuli. There are drugs that we now know affect histone acetylation that are already in use in clinical populations. The current study uses these drugs to examine the consequences of acutely increasing or decreasing histone acetylation during exposure to social stress.

View Article and Find Full Text PDF