ACS Appl Mater Interfaces
April 2018
This study presents innovative TiNb N-Ag films obtained by a suitable combination of low-energy and high-energy sputtering leading to bacterial inactivation. The bacterial inactivation kinetics by the TiNbN layers was drastically enhanced by the addition of 6-7% Ag and proceeded to completion within 3 h after the film autoclaving. By X-ray photoelectron spectroscopy (XPS), the samples after autoclaving presented in their upper layers TiO, NbO and AgO with a surface composition of TiNbNAg.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
The preparation, characterization, and antibacterial testing of Cu-Ag sputtered polyurethane (PU) catheters are addressed in this study. PU catheters with different atomic ratios Cu:Ag have been sputtered and led to different optical properties as followed by diffuse reflectance spectroscopy (DRS) and the surface redox properties were also different for different Cu-Ag ratios as observed by X-ray photoelectron spectroscopy (XPS). The surface atomic percentage concentration of the oxidized/reduced C-species originating from bacterial cultures before and after bacterial inactivation were determined on the Cu-Ag PU catheters.
View Article and Find Full Text PDFThe first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior.
View Article and Find Full Text PDFAntibacterial robust, uniform TiO2-ZrO2 films on polyester (PES) under low intensity sunlight irradiation made up by equal amounts of TiO2 and ZrO2 exhibited a much higher bacterial inactivation kinetics compared to pure TiO2 or ZrO2. The TiO2-ZrO2 matrix was found to introduce a drastic increase in the Cu-dopant promoter enhancing bacterial inactivation compared to Cu sputtered in the same amount on PES. Furthermore, the bacterial inactivation was accelerated by a factor close to three, by Cu- on TiO2-ZrO2 at extremely low levels ∼0.
View Article and Find Full Text PDFEvidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES-TiO2 and PE-TiO2 samples. The amount of TiO2 on the films was monitored by diffuse reflectance spectroscopy and X-ray fluorescence.
View Article and Find Full Text PDFThe bacterial inactivation of Escherichia coli on Cu/CuO-polyester surfaces prepared by direct current magnetron sputtering was investigated in the dark and under actinic light (360 nm≤ λ ≤ 720 nm; 4.1 mW/cm(2)) as used commonly in hospital facilities. In the dark, complete bacterial inactivation (6log10 reduction) was observed within 150 min and under actinic light within 45 min.
View Article and Find Full Text PDFLaTiO(2)N photoanodes for solar water splitting were prepared by electrophoretic deposition and demonstrated the best photocurrents ever reported for this material. Further important enhancement of the performance was obtained by the use of a sputtered In(2)O(3) overlayer.
View Article and Find Full Text PDFThis paper reports on the preparation of silver/antimony-doped tin oxide (Ag/SnO(2):Sb) hybrid interfaces using magnetron sputtering and their characterization. The influence of the Sn target composition (doping with 2 or 5% Sb) on the electrochemical and electrical characteristics of the hybrid interface was investigated using X-ray photoelectron spectroscopy (XPS), sheet resistance measurements, cyclic voltammetry, scanning tunneling microscopy (STM) and surface plasmon resonance (SPR). The best interface in terms of electrical conductivity and SPR signal is a hybrid interface with a 8.
View Article and Find Full Text PDF