Publications by authors named "Rosemary M Onjiko"

The left-right (L-R) axis of most bilateral animals is established during gastrulation when a transient ciliated structure creates a directional flow of signaling molecules that establish asymmetric gene expression in the lateral plate mesoderm. However, in some animals, an earlier differential distribution of molecules and cell division patterns initiate or at least influence L-R patterning. Using single-cell high-resolution mass spectrometry, we previously reported a limited number of small molecule (metabolite) concentration differences between left and right dorsal-animal blastomeres of the eight-cell Xenopus embryo.

View Article and Find Full Text PDF

We report the development of in vivo subcellular high-resolution mass spectrometry (HRMS) for proteo-metabolomic molecular systems biology in complex tissues. With light microscopy, we identified the left-dorsal and left-ventral animal cells in cleavage-stage non-sentient Xenopus laevis embryos. Using precision-translated fabricated microcapillaries, the subcellular content of each cell was double-probed, each time swiftly (<5 s/event) aspirating <5 % of cell volume (≈10 nL).

View Article and Find Full Text PDF

Recent developments in high-resolution mass spectrometry (HRMS) technology enabled ultrasensitive detection of proteins, peptides, and metabolites in limited amounts of samples, even single cells. However, extraction of trace-abundance signals from complex data sets ( m/ z value, separation time, signal abundance) that result from ultrasensitive studies requires improved data processing algorithms. To bridge this gap, we here developed "Trace", a software framework that incorporates machine learning (ML) to automate feature selection and optimization for the extraction of trace-level signals from HRMS data.

View Article and Find Full Text PDF

The quantification of small molecules in single cells raises new potentials for better understanding the basic processes that underlie embryonic development. To enable single-cell investigations directly in live embryos, new analytical approaches are needed, particularly those that are sensitive, selective, quantitative, robust, and scalable to different cell sizes. Here, we present a protocol that enables the in situ analysis of metabolism in single cells in freely developing embryos of the South African clawed frog (Xenopus laevis), a powerful model in cell and developmental biology.

View Article and Find Full Text PDF

Single-cell mass spectrometry (MS) empowers the characterization of metabolomic changes as cells differentiate to different tissues during early embryogenesis. Using whole-cell dissection and capillary electrophoresis electrospray ionization (CE-ESI) MS, we recently uncovered metabolic cell-to-cell differences in the 8- and 16-cell embryo of the South African clawed frog (), raising the question whether metabolic cell heterogeneity is also detectable across the dorsal-ventral axis of the 8-cell embryo. Here, we tested this hypothesis directly in the live embryo by quantifying single-cell metabolism between the left dorsal-animal (D1L) and left ventral-animal (V1L) cell pairs in the same embryo using microprobe single-cell CE-ESI-MS in the positive ion mode.

View Article and Find Full Text PDF

Knowledge of single-cell metabolism would provide a powerful look into cell activity changes as cells differentiate to all the tissues of the vertebrate embryo. However, single-cell mass spectrometry technologies have not yet been made compatible with complex three-dimensional changes and rapidly decreasing cell sizes during early development of the embryo. Here, we bridge this technological gap by integrating capillary microsampling, microscale metabolite extraction, and capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS) to enable direct metabolic analysis of identified cells in the live frog embryo (Xenopus laevis).

View Article and Find Full Text PDF

Systems cell biology understanding of development requires characterization of all the molecules produced in the biological system. Decades of research and new-generation sequencing provided functional information on key genes and transcripts. However, there is less information available on how differential gene expression translates into the domains of functionally important proteins, peptides, and metabolites, and how changes in these molecules impact development.

View Article and Find Full Text PDF

Single-cell metabolic mass spectrometry enables the discovery (untargeted) analysis of small molecules in individual cells. Using single-cell capillary electrophoresis high-resolution mass spectrometry (CE-HRMS), we recently uncovered small-molecule differences between embryonic cells located along the animal-vegetal and dorsal-ventral axes of the 16-cell frog (Xenopus laevis) embryo, raising the question whether metabolic cell heterogeneity also exists along the left-right body axis. To address this question, we here advance single-cell CE-HRMS for identifying and quantifying metabolites in higher analytical sensitivity, and then use the methodology to compare metabolite production between left and right cells.

View Article and Find Full Text PDF

Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: