Integral membrane proteins represent a large and diverse portion of the proteome and are often recalcitrant to purification, impeding studies essential for understanding protein structure and function. By combining co-evolutionary constraints and computational modeling with biochemical validation through site-directed mutagenesis and enzyme activity assays, we demonstrate here a synergistic approach to structurally model purification-resistant topologically complex integral membrane proteins. We report the first structural model of a eukaryotic membrane-bound -acyltransferase (MBOAT), ghrelin acyltransferase (GOAT), which modifies the metabolism-regulating hormone ghrelin.
View Article and Find Full Text PDFGhrelin O-acyltransferase (GOAT) is an integral membrane acyltransferase responsible for catalyzing a serine-octanoylation posttranslational modification within the peptide hormone ghrelin. Ghrelin requires this octanoylation for its biological activity in stimulating appetite and in regulating other physiological pathways involved in energy balance. Blocking ghrelin acylation using GOAT inhibitors is a new potential avenue to treat health conditions impacted by ghrelin signaling, such as obesity and diabetes.
View Article and Find Full Text PDF