Publications by authors named "Rosemary J Akhurst"

Stem cells play a critical role in cancer development by contributing to cell heterogeneity, lineage plasticity, and drug resistance. We created gene expression networks from hundreds of mouse tissue samples (both normal and tumor) and integrated these with lineage tracing and single-cell RNA-seq, to identify convergence of cell states in premalignant tumor cells expressing markers of lineage plasticity and drug resistance. Two of these cell states representing multilineage plasticity or proliferation were inversely correlated, suggesting a mutually exclusive relationship.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition or transformation (EMT) is a cell shape-changing process that is utilized repeatedly throughout embryogenesis and is critical to the attainment of a precise body plan. In the adult, EMT is observed under both normal and pathological conditions, such as during normal wounding healing, during development of certain fibrotic states and vascular anomalies, as well as in some cancers when malignant cells progress to become more aggressive, invasive, and metastatic. Epithelia derived from any of the three embryonic germ layers can undergo EMT, including those derived from mesoderm, such as endothelial cells (sometimes termed Endo-MT) and those derived from endoderm such as fetal liver stroma.

View Article and Find Full Text PDF
Article Synopsis
  • Adult stem cells are important for keeping tissues healthy and can also help tumors grow by becoming different types of cells and resisting treatment.
  • Researchers studied mouse samples to understand how normal and tumor stem cells are related and discovered new ways these cells behave during cancer development.
  • They found that certain tumor cells can change and resist drugs, which could help create new strategies for treating cancer more effectively.
View Article and Find Full Text PDF

Discovered over four decades ago, transforming growth factor β (TGFβ) is a potent pleiotropic cytokine that has context-dependent effects on most cell types. It acts as a tumor suppressor in some cancers and/or supports tumor progression and metastasis through its effects on the tumor stroma and immune microenvironment. In TGFβ-responsive tumors it can promote invasion and metastasis through epithelial-mesenchymal transformation, the appearance of cancer stem cell features, and resistance to many drug classes, including checkpoint blockade immunotherapies.

View Article and Find Full Text PDF

αvβ8 integrin, a key activator of transforming growth factor β (TGF-β), inhibits anti-tumor immunity. We show that a potent blocking monoclonal antibody against αvβ8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma, mammary cancer, colon cancer, and prostate cancer, especially when combined with other immunomodulators or radiotherapy. αvβ8 is expressed at the highest levels in CD4+CD25+ T cells in tumors, and specific deletion of β8 from T cells is as effective as ADWA-11 in suppressing tumor growth.

View Article and Find Full Text PDF

TGFβ signalling has key roles in cancer progression: most carcinoma cells have inactivated their epithelial antiproliferative response and benefit from increased TGFβ expression and autocrine TGFβ signalling through effects on gene expression, release of immunosuppressive cytokines and epithelial plasticity. As a result, TGFβ enables cancer cell invasion and dissemination, stem cell properties and therapeutic resistance. TGFβ released by cancer cells, stromal fibroblasts and other cells in the tumour microenvironment further promotes cancer progression by shaping the architecture of the tumour and by suppressing the antitumour activities of immune cells, thus generating an immunosuppressive environment that prevents or attenuates the efficacy of anticancer immunotherapies.

View Article and Find Full Text PDF

Tumors comprise cancer stem cells (CSCs) and their heterogeneous progeny within a stromal microenvironment. In response to transforming growth factor-β (TGF-β), epithelial and carcinoma cells undergo a partial or complete epithelial-mesenchymal transition (EMT), which contributes to cancer progression. This process is seen as reversible because cells revert to an epithelial phenotype upon TGF-β removal.

View Article and Find Full Text PDF

Angiogenesis, the development of new blood vessels, is a key process in disease. We reported that insulin promotes translocation of transforming growth factor β (TGF-β) receptors to the plasma membrane of epithelial and fibroblast cells, thus enhancing TGF-β responsiveness. Since insulin promotes angiogenesis, we addressed whether increased autocrine TGF-β signaling participates in endothelial cell responses to insulin.

View Article and Find Full Text PDF

During epithelial-mesenchymal transition (EMT), reprogramming of gene expression is accompanied by histone modifications. Whether EMT-promoting signaling directs functional changes in histone methylation has not been established. We show here that the histone lysine methyltransferase SETDB1 represses EMT and that, during TGF-β-induced EMT, cells attenuate SETDB1 expression to relieve this inhibition.

View Article and Find Full Text PDF
Targeting TGF-β Signaling for Therapeutic Gain.

Cold Spring Harb Perspect Biol

October 2017

Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-β (TGF-β) signaling, and TGF-β drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-β also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-β type I receptor.

View Article and Find Full Text PDF

The highly conserved wiring of the SMAD-dependent transforming growth factor β (TGFβ) superfamily signaling pathway has been mapped over the last 20 years after molecular discovery of its component parts. Numerous alternative TGFβ-activated signaling pathways that elicit SMAD-independent biological responses also exist. However, the molecular mechanisms responsible for the renowned context dependency of TGFβ signaling output remains an active and often confounding area of research, providing a prototype relevant to regulation of other signaling pathways.

View Article and Find Full Text PDF

HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient.

View Article and Find Full Text PDF

Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3, on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b(C57) haplotype suppresses prenatal lethality of Tgfb1(-/-) embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells.

View Article and Find Full Text PDF

TGFβ activation and signaling have been extensively studied in experimental models of allergen-induced asthma as potential therapeutic targets during chronic or acute phases of the disease. Outcomes of experimental manipulation of TGFβ activity have been variable, in part due to use of different model systems. Using an ovalbumin (OVA)-induced mouse model of asthma, we here show that innate variation within TGFβ1 genetic modifier loci, Tgfbm2 and Tgfbm3, alters disease susceptibility.

View Article and Find Full Text PDF

Many drugs that target transforming growth factor-β (TGFβ) signalling have been developed, some of which have reached Phase III clinical trials for a number of disease applications. Preclinical and clinical studies indicate the utility of these agents in fibrosis and oncology, particularly in augmentation of existing cancer therapies, such as radiation and chemotherapy, as well as in tumour vaccines. There are also reports of specialized applications, such as the reduction of vascular symptoms of Marfan syndrome.

View Article and Find Full Text PDF

Two new studies show that haploinsufficiency for causes a familial syndrome of thoracic aortic aneurysms and dissections with other clinical features that overlap the Marfan, Loeys-Dietz spectrum of syndromes. Their finding of loss-of-function mutations in yet another transforming growth factor (TGF)-β pathway gene reinforces the seeming paradox of observed increases in the downstream TGF-β signaling pathway.

View Article and Find Full Text PDF

Many advanced tumors produce excessive amounts of Transforming Growth Factor-β (TGF-β) which, in normal epithelial cells, is a potent growth inhibitor. However, in oncogenically activated cells, the homeostatic action of TGF-β is often diverted along alternative pathways. Hence, TGF-β signaling elicits protective or tumor suppressive effects during the early growth-sensitive stages of tumorigenesis.

View Article and Find Full Text PDF

In cancer progression, carcinoma cells gain invasive behavior through a loss of epithelial characteristics and acquisition of mesenchymal properties, a process that can lead to epithelial-mesenchymal transition (EMT). TGF-β is a potent inducer of EMT, and increased TGF-β signaling in cancer cells is thought to drive cancer-associated EMT. Here, we examine the physiological requirement for mTOR complex 2 (mTORC2) in cells undergoing EMT.

View Article and Find Full Text PDF

Deletions of the genes encoding the integrin αVβ8 (Itgav, Itgb8) have been shown to result in abnormal vascular development in the CNS, including prenatal and perinatal hemorrhage. Other work has indicated that a major function of this integrin in vivo is to promote TGFβ activation. In this paper, we show that Itgb8 mRNA is strongly expressed in murine Müller glia and retinal ganglion cells, but not astrocytes.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia (HHT) [corrected] is a vascular dysplasia syndrome caused by mutations in transforming growth factor-β/bone morphogenetic protein pathway genes, ENG and ACVRL1. HHT [corrected] shows considerable variation in clinical manifestations, suggesting environmental and/or genetic modifier effects. Strain-specific penetrance of the vascular phenotypes of Eng(+/-) and Tgfb1(-/-) mice provides further support for genetic modification of transforming growth factor-β pathway deficits.

View Article and Find Full Text PDF

Purpose: To determine whether inhibition of TGFβ signaling prior to irradiation sensitizes human and murine cancer cells in vitro and in vivo.

Experimental Design: TGFβ-mediated growth and Smad phosphorylation of MCF7, Hs578T, MDA-MB-231, and T47D human breast cancer cell lines were examined and correlated with clonogenic survival following graded radiation doses with and without pretreatment with LY364947, a small molecule inhibitor of the TGFβ type I receptor kinase. The DNA damage response was assessed in irradiated MDA-MB-231 cells pretreated with LY364947 in vitro and LY2109761, a pharmacokinetically stable inhibitor of TGFβ signaling, in vivo.

View Article and Find Full Text PDF