Purpose: Autosomal recessive bestrophinopathy (ARB) is a retinal dystrophy affecting macular and retinal pigmented epithelium function resulting from homozygous or compound heterozygous mutations in BEST1. In this study we characterize the functional implications of missense bestrophin-1 mutations that cause ARB by investigating their effect on bestrophin-1's chloride conductance, cellular localization, and stability.
Methods: The chloride conductance of wild-type bestropin-1 and a series of ARB mutants were determined by whole-cell patch-clamping of transiently transfected HEK cells.
Purpose: Autosomal recessive bestrophinopathy (ARB) is a newly defined retinal dystrophy caused by biallelic mutations in bestrophin-1 (BEST1) and is hypothesized to represent the null bestrophin-1 phenotype in humans. The aim was to determine whether a synonymous BEST1 variant, c.102C>T, identified in two unrelated ARB patients, alters pre-mRNA splicing of the gene.
View Article and Find Full Text PDFBestrophin-1 is preferentially expressed at the basolateral membrane of the retinal pigmented epithelium (RPE) of the retina. Mutations in the BEST1 gene cause the retinal dystrophies vitelliform macular dystrophy, autosomal-dominant vitreochoroidopathy, and autosomal-recessive bestrophinopathy. Here, we describe four missense mutations in bestrophin-1, three that we believe are previously unreported, in patients diagnosed with autosomal-dominant and -recessive forms of retinitis pigmentosa (RP).
View Article and Find Full Text PDF