Publications by authors named "Rosemarie Smith"

Article Synopsis
  • Cornelia de Lange Syndrome (CdLS) is a rare genetic disorder marked by a variety of symptoms including growth delays, upper limb issues, and other systemic problems, primarily caused by mutations in specific genes associated with the cohesin complex.
  • The majority of CdLS cases (over 60%) are linked to mutations in the NIPBL gene, which leads to the most severe form of the syndrome; other cohesin gene mutations typically result in milder symptoms.
  • The study analyzed the genetic factors in 716 individuals with CdLS to better understand the contributions of cohesin complex genes and identify potential new candidate genes, improving knowledge of genetic variations and their effects on CdLS manifestations.
View Article and Find Full Text PDF

We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in (). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects.

View Article and Find Full Text PDF

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • BET1 is essential for the fusion of vesicles from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment and cis-Golgi, working with partners like GOSR2 and Syntaxin-5.
  • Three individuals with severe congenital muscular dystrophy (CMD) were found to have mutations in BET1 that led to reduced protein levels and disrupted ER-to-Golgi transport.
  • The study identifies new interaction partners for BET1 and highlights the mislocalization of ERGIC-53 in cells from patients, confirming BET1's role as a new gene associated with CMD and its connection to the functioning of ER/Golgi SNARE proteins.
View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic variants in the MYT1L gene lead to a neurodevelopmental disorder characterized by features like developmental delays, intellectual disabilities, and behavioral disorders.
  • A study analyzed genetic data from 40 previously unreported patients, adding to a total of 62 patients to better understand the clinical characteristics and genotype-phenotype correlations.
  • The research confirmed key phenotypic traits, introduced new clinical features, and emphasized that patients with certain genetic variants do not show distinct clinical differences, aiding in improved diagnosis and management of the disorder.
View Article and Find Full Text PDF

Purpose: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu).

Methods: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been released.
  • The amendment can be accessed through a link located at the top of the paper.
  • Readers are encouraged to check the link for updated information.
View Article and Find Full Text PDF

Purpose: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND).

Methods: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex.

View Article and Find Full Text PDF
Article Synopsis
  • * Approximately 25% of those with these variants exhibited a Noonan-like phenotype, notably more than traditional NF1 patients (p < .0001), with p.Arg1276 and p.Lys1423 linked to serious cardiovascular issues.
  • * The p.Met1149 variant presented a milder phenotype mainly with skin symptoms, affecting 0.4% of the UAB cohort, highlighting important genotype-phenotype correlations that can improve patient counseling and
View Article and Find Full Text PDF

The developmental and epileptic encephalopathies (DEE) are a heterogeneous group of chronic encephalopathies frequently associated with rare de novo nonsynonymous coding variants in neuronally expressed genes. Here, we describe eight probands with a DEE phenotype comprising intellectual disability, epilepsy, and hypotonia. Exome trio analysis showed de novo variants in TRPM3, encoding a brain-expressed transient receptor potential channel, in each.

View Article and Find Full Text PDF

Multifocal atrial tachycardia (MAT) has a well-known association with Costello syndrome, but is rarely described with related RAS/MAPK pathway disorders (RASopathies). We report 11 patients with RASopathies (Costello, Noonan, and Noonan syndrome with multiple lentigines [formerly LEOPARD syndrome]) and nonreentrant atrial tachycardias (MAT and ectopic atrial tachycardia) demonstrating overlap in cardiac arrhythmia phenotype. Similar overlap is seen in RASopathies with respect to skeletal, musculoskeletal and cutaneous abnormalities, dysmorphic facial features, and neurodevelopmental deficits.

View Article and Find Full Text PDF
Article Synopsis
  • Many genetic causes of developmental delays and intellectual disabilities (DD/ID) are rare and require large-scale DNA sequencing and data sharing for discovery.
  • A collaboration called GeneMatcher identified 13 individuals with protein-altering variants in the MED13 gene, with most mutations being de novo and linked to various developmental issues like autism and speech delays.
  • The study highlights potential pathogenic mutations affecting the MED13 protein's structure, contributing to our understanding of genetic factors involved in DD/ID and associating MED13 with similar disease genes in the CDK8-kinase module.
View Article and Find Full Text PDF

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype.

View Article and Find Full Text PDF

Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype.

View Article and Find Full Text PDF

MECP2 triplication syndrome is a rare and usually lethal genetic disorder characterized by progressive neurologic and cognitive regression. None of the four reported cases describe prenatal sonographic features of affected offspring. We report a second-trimester fetus with marked prefrontal and prenasal skin thickening, retrognathia, and later, third-trimester mild cerebral ventriculomegaly.

View Article and Find Full Text PDF

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization.

View Article and Find Full Text PDF

Background: Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management.

Methods: We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization.

View Article and Find Full Text PDF

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation.

View Article and Find Full Text PDF

Chromosome 4q deletion syndrome (4q- syndrome) is a rare condition, with an estimated incidence of 1 in 100,000. Although variable, the clinical spectrum commonly includes craniofacial, developmental, digital, skeletal, and cardiac involvement. Data on the genotype-phenotype correlation within the 4q arm are limited.

View Article and Find Full Text PDF

Background: Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis.

Aim: To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients.

View Article and Find Full Text PDF

Purpose: To evaluate stepwise sequential screening (SSS) efficiency in clinical practice.

Methods: All singletons undergoing SSS in a single practice by NTQR (Nuchal Translucency Quality Review Program)-credentialed providers in a 2-year period were included. Prenatal diagnosis was offered to all screen-positive women and those with a nuchal translucency ≥3.

View Article and Find Full Text PDF
Article Synopsis
  • - The study found complex genomic rearrangements involving duplications and triplications at the MECP2 and PLP1 gene locations in 11 unrelated individuals.
  • - These rearrangements feature a unique structure where a triplicated segment is inverted and placed between two duplicated segments, identified as DUP-TRP/INV-DUP.
  • - The researchers suggest that such complex genetic variations are likely caused by inverted repeats within the genome and propose mechanisms combining homologous and nonhomologous DNA processes.
View Article and Find Full Text PDF

Dyssegmental dysplasia is a rare, lethal, autosomal-recessive disorder characterized by severe camptomicromelia and anisospondyly. We describe the prenatal sonographic findings in an index case of the Rolland-Desbuquois type, with the diagnosis made by neonatal skeletal survey. Recognition of the unique vertebral disorganization may be used to prenatally distinguish dyssegmental dysplasia from other severe short-limbed conditions.

View Article and Find Full Text PDF

Branchio-oculo-facial syndrome (BOFS; OMIM#113620) is a rare autosomal dominant craniofacial disorder with variable expression. Major features include cutaneous and ocular abnormalities, characteristic facies, renal, ectodermal, and temporal bone anomalies. Having determined that mutations involving TFAP2A result in BOFS, we studied a total of 30 families (41 affected individuals); 26/30 (87%) fulfilled our cardinal diagnostic criteria.

View Article and Find Full Text PDF