Background: Assessing the performance of elite lines in target environments is essential for breeding programs to select the most relevant genotypes. One of the main complexities in this task resides in accounting for the genotype by environment interactions. Genomic prediction models that integrate information from multi-environment trials and environmental covariates can be efficient tools in this context.
View Article and Find Full Text PDFRice genetic improvement is a key component of achieving and maintaining food security in Asia and Africa in the face of growing populations and climate change. In this effort, the International Rice Research Institute (IRRI) continues to play a critical role in creating and disseminating rice varieties with higher productivity. Due to increasing demand for rice, especially in Africa, there is a strong need to accelerate the rate of genetic improvement for grain yield.
View Article and Find Full Text PDFThe integration of new technologies into public plant breeding programs can make a powerful step change in agricultural productivity when aligned with principles of quantitative and Mendelian genetics. The breeder's equation is the foundational application of quantitative genetics to crop improvement. Guided by the variables that describe response to selection, emerging breeding technologies can make a powerful step change in the effectiveness of public breeding programs.
View Article and Find Full Text PDF