The skin microbiota plays a major role in health of organisms but it is still unclear how such bacterial assemblages respond to changes in environmental conditions and anthropogenic perturbations. In this study, we investigated the effects of the eutrophication of freshwater ecosystems on the skin microbiota of fish. We sampled wild gudgeon Gobio occitaniae from 17 river sites along an eutrophication gradient and compared their skin microbiota diversity and composition, using a 16s rRNA gene metabarcoding approach.
View Article and Find Full Text PDFDetermining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods.
View Article and Find Full Text PDFGiven the ongoing decline of both pollinators and plants, it is crucial to implement effective methods to describe complex pollination networks across time and space in a comprehensive and high-throughput way. Here we tested if metabarcoding may circumvent the limits of conventional methodologies in detecting and quantifying plant-pollinator interactions. Metabarcoding experiments on pollen DNA mixtures described a positive relationship between the amounts of DNA from focal species and the number of trnL and ITS1 sequences yielded.
View Article and Find Full Text PDFHabitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation.
View Article and Find Full Text PDF