Publications by authors named "Rosela Webster"

Human clinical trials have reported immunological outcomes can differ between ipsilateral (same side) and contralateral (alternate sides) prime-boost vaccination. However, our mechanistic understanding of how keeping or shifting the anatomical sites of immunization impacts the resultant germinal centers (GCs) and antibody responses is limited. Here, we use an adjuvanted SARS-CoV-2 spike vaccine to dissect GC dynamics in draining lymph nodes and serological outcomes following ipsilateral or contralateral prime-boost vaccination in C57BL/6 mice.

View Article and Find Full Text PDF

Recombinant influenza viruses are promising vectors that can bolster antibody and resident lymphocyte responses within mucosal sites. This study evaluates recombinant influenza viruses with SARS-CoV-2 RBD genes in eliciting mucosal and systemic responses. Using reverse genetics, we generated replication-competent recombinant influenza viruses carrying heterologous RBD genes in monomeric, trimeric, or ferritin-based nanoparticle forms.

View Article and Find Full Text PDF

Antibodies produced by antibody-secreting plasma cells (ASCs) underlie multiple forms of long-lasting immunity. Here we examined the mechanisms regulating ASC turnover and persistence using a genetic reporter to time-stamp ASCs. This approach revealed ASC lifespans as heterogeneous and falling on a continuum, with only a small fraction surviving for >60 days.

View Article and Find Full Text PDF

Vaccines work largely by generating long-lived plasma cells (LLPCs), but knowledge of how such cells are recruited is sparse. Although it is clear that LLPCs preferentially originate in germinal centers (GCs) and relocate to survival niches in bone marrow where they can persist for decades, the issues of the timing of LLPC recruitment and the basis of their retention remain uncertain. Here, using a genetic timestamping system in mice, we show that persistent PCs accrue in bone marrow at an approximately constant rate of one cell per hour over a period spanning several weeks after a single immunization with a model antigen.

View Article and Find Full Text PDF

Plasma cells (PC) are key to protective immunity because they secrete antibodies. Surviving for periods ranging from days to decades in mammals, PC possess varying survival times that cannot be entirely stochastic or extrinsically set, as presumed half-lives vary with antigenic specificity. Here, we review the signals that impart survival potential to PC.

View Article and Find Full Text PDF

Age-associated decreases in primary CD8 T cell responses occur, in part, due to direct effects on naive CD8 T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T) cells, but their contribution to age-related functional decline is unclear. Here, we show that T cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T cells) retain proliferative capacity in both aged mice and humans.

View Article and Find Full Text PDF