Electrolysis of seawater for hydrogen (H) production to harvest clean energy is an appealing approach. In this context, there is an urgent need for catalysts with high activity and durability. RuO electrocatalysts have shown efficient activity in the hydrogen and oxygen evolution reactions (HER and OER), but they still suffer from poor stability.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Free of posttransfer, on-surface synthesis (OSS) of single-atomic-layer nanostructures directly on semiconductors holds considerable potential for next-generation devices. However, due to the high diffusion barrier and abundant defects on semiconductor surfaces, extended and well-defined OSS on semiconductors has major difficulty. Furthermore, given semiconductors' limited thermal catalytic activity, initiating high-barrier reactions remains a significant challenge.
View Article and Find Full Text PDFUllmann coupling is a widely used reaction for the on-surface growth of low-dimensional carbon nanomaterials. The irreversible nature of this reaction prevents the "self-healing" of defects, and a detailed knowledge of its mechanism is therefore essential to enable the growth of extended ordered structures. However, the dynamics of the Ullmann polymerization remain largely unexplored, as coupling events occur on a timescale faster than conventional scanning probe microscopy imaging frequencies.
View Article and Find Full Text PDFDoping in semiconductor quantum dots (QDs) using optically active dopants tailors their optical, electronic, and magnetic properties beyond what is achieved by controlling size, shape, and composition. Herein, we synergistically modulated the optical properties of eco-friendly ZnInSe/ZnSe core/shell QDs by incorporating Cu-doping and Mn-alloying into their core and shell to investigate their use in anti-counterfeiting and information encryption. The engineered "Cu:ZnInSe/Mn:ZnSe" core/shell QDs exhibit an intense bright orange photoluminescence (PL) emission centered at 606 nm, with better color purity than the undoped and individually doped core/shell QDs.
View Article and Find Full Text PDFHydrogen-bonded (H-bonded) self-assembly is a suitable approach for tailoring the solid-state packing and properties of organic semiconductors. Here we studied the H-bonded self-assembly of an important class of organic semiconductors, diketopyrrolopyrrole (DPP) derivatives, diselenophenylDPP (DSeDPP), dithiazolylDPP (DTzDPP), and dithienothiophenylDPP (DTTDPP), at solid-liquid interfaces using scanning tunneling microscopy (STM) and density functional theory (DFT). At the 1-octanoic acid/highly ordered pyrolytic graphite (HOPG) interface, DSeDPP and DTzDPP either co-assemble with the solvent H-bonding between lactam and carboxyl groups or form homoassemblies through H-bonding between the lactam groups.
View Article and Find Full Text PDFColloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented.
View Article and Find Full Text PDFQuantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs), yet most QD-based LSCs suffer from toxic metal composition and color tinting. UV-selective harvesting QDs can enable visible transparency, but their development is restricted by large reabsorption losses and low photoluminescence quantum yield (PLQY). The developed here Ag, Mn: ZnInS/ZnS QDs show a high PLQY of 53% due to the passivating effect of ZnS shell.
View Article and Find Full Text PDFThis perspective defines and explores an innovative waste heat harvesting strategy, thermoelectrocatalysis (TECatal), emphasizing materials design and potential applications in clean energy, environmental, and biomedical technologies.
View Article and Find Full Text PDFTwo-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states.
View Article and Find Full Text PDFSemiconductor core/shell quantum dots (QDs) are considered promising building blocks to fabricate photoelectrochemical (PEC) cells for the direct conversion of solar energy into hydrogen (H). However, the lattice mismatch between core and shell in such QDs results in undesirable defects and severe carrier recombination, limiting photo-induced carrier separation/transfer and solar-to-fuel conversion efficiency. Here, an interface engineering approach is explored to minimize the core-shell lattice mismatch in CdS/CdSeS (x = 0.
View Article and Find Full Text PDFDue to their low cost and high efficiency, hybrid perovskite solar cells (PSCs) have shown the most outstanding competitiveness among third-generation photovoltaic (PV) devices. However, several challenges remain unresolved, among which the limited stability is arguably the main. Chlorine (Cl) has been widely employed to yield PV performances, but the Cl-doping mechanism and its role in mixed-halide PSCs are not entirely understood.
View Article and Find Full Text PDFColloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
Heterogeneous catalytic ammoxidation provides an eco-friendly route for the cyanide-free synthesis of nitrile compounds, which are important precursors for synthetic chemistry and pharmaceutical applications. However, in general such a process requires high pressures of molecular oxygen at elevated temperatures to accelerate the oxygen reduction and imine dehydrogenation steps, which is highly risky in practical applications. Here, we report an electric field enhanced ammoxidation system using a supported Fe clusters catalyst (Fe/NC), which enables efficient synthesis of nitriles from the corresponding aldehydes under ambient air pressure at room temperature (RT).
View Article and Find Full Text PDFAdditive manufacturing (AM) enables the production of high value and high performance components with applications from aerospace to biomedical fields. We report here on the fabrication of poly(3-hexylthiophene): phenyl-C-butyric acid methyl ester (P3HT:PCBM) thin films through the electrohydrodynamic atomization (EHDA) process and its integration as absorber layer for organic solar cells. Prior to the film fabrication, the optimization of the process was carried out by developing the operating envelope for the P3HT:PCBM ink to determine the optimal flow rate and the appropriate applied voltage to achieve a stable-cone deposition mode.
View Article and Find Full Text PDFAs an efficient molecular engineering approach, on-surface synthesis (OSS) defines a special opportunity to investigate intermolecular coupling at the sub-molecular level and has delivered many appealing polymers. So far, all OSS is based on the lateral covalent bonding of molecular precursors within a single molecular layer; extending OSS from two to three dimensions is yet to be realized. Herein, we address this challenge by cycloaddition between C and an aromatic compound.
View Article and Find Full Text PDFTwo-dimensional hexagonal boron nitride (2D h-BN) is being extensively studied in optoelectronic devices due to its electronic and photonic properties. However, the controlled optimization of h-BN's insulating properties is necessary to fully explore its potential in energy conversion and storage devices. In this work, we engineered the surface of h-BN nanoflakes one-step chemical functionalization using a liquid-phase exfoliation approach.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2023
InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties.
View Article and Find Full Text PDFThick-shell colloidal quantum dots (QDs) are promising building blocks for solar technologies due to their size/composition/shape-tunable properties. However, most well-performed thick-shell QDs suffer from frequent use of toxic metal elements including Pb and Cd, and inadequate light absorption in the visible and near-infrared (NIR) region due to the wide bandgap of the shell. In this work, eco-friendly AgInSe /AgInS core/shell QDs, which are optically active in the NIR region and are suitable candidates to fabricate devices for solar energy conversion, are developed.
View Article and Find Full Text PDFSolar-driven photoelectrochemical (PEC) water splitting is a promising approach toward sustainable hydrogen (H ) generation. However, the design and synthesis of efficient semiconductor photocatalysts via a facile method remains a significant challenge, especially p-n heterojunctions based on composite metal oxides. Herein, a MOF-on-MOF (metal-organic framework) template is employed as the precursor to synthesize In O /CuO p-n heterojunction composite.
View Article and Find Full Text PDFEnvironmental-friendly halogenation of C-H bonds using abundant, non-toxic halogen salts is in high demand in various chemical industries, yet the efficiency and selectivity of laboratory available protocols are far behind the conventional photolytic halogenation process which uses hazardous halogen sources. Here we report an FeX (X=Br, Cl) coupled semiconductor system for efficient, selective, and continuous photocatalytic halogenation using NaX as halogen source under mild conditions. Herein, FeX catalyzes the reduction of molecular oxygen and the consumption of generated oxygen radicals, thus boosting the generation of halogen radicals and elemental halogen for direct halogenation and indirect halogenation via the formation of FeX .
View Article and Find Full Text PDFHeterogeneous photocatalysis is effective for the selective synthesis of value-added chemicals at lab-scale, yet falls short of requirements for mass production (low cost and user friendliness). Here we report the design and fabrication of a modular tubular flow system embedded with replaceable photocatalyst membranes for scalable photocatalytic C-C, C-N homocoupling and hydrogenation reactions, which can be operated in either circular and continuous flow mode with high performance. The photocatalyst membranes almost fully occupy the volume of the reactor, thus enabling optimal absorption of the incident light.
View Article and Find Full Text PDFThe precise control of molecular self-assembly on surfaces presents many opportunities for the creation of complex nanostructures. Within this endeavor, selective patterning by exploiting molecular interactions at the solid-liquid interface would be a beneficial capability. Using scanning tunneling microscopy at the 1,2,4-trichlorobenzene/Au(111) interface, we observed selective self-assembly of 1,3,5-tris(4-methoxyphenyl)benzene (TMPB) molecules in the face-centered cubic (FCC) regions of Au(111).
View Article and Find Full Text PDFThe α-haloketones are important precursors for synthetic chemistry and pharmaceutical applications; however, their production relies heavily on traditional synthetic methods via halogenation of ketones that are toxic and environmentally risky. Here, we report a heterogeneous photosynthetic strategy of α-haloketone production from aromatic olefins using copper-modified graphitic carbon nitride (Cu-CN) under mild reaction conditions. By employing NiX (X = Cl, Br) as the halogen source, a series of α-haloketones can be synthesized using atmospheric air as the oxidant under visible-light irradiation.
View Article and Find Full Text PDFCharge separation, transmission, and light absorption properties are critical to determining the performance of photoelectrochemical (PEC) devices. An important strategy to control such properties is based on using heterostructured materials. Herein, a tunable zero-dimensional (0D)/two-dimensional (2D) heterostructure is designed based on quantum dots (QDs) and 2D nanosheets (NSs).
View Article and Find Full Text PDFWe report the design and one-pot synthesis of Ag-doped BiVOembedded in reduced graphene oxide (BiVO:Ag/rGO) nanocomposites via a hydrothermal processing route. The binary heterojunction photocatalysts exhibited high efficiency for visible light degradation of model dyes and were correspondingly used for the preparation of photocatalytic membranes using polyvinylidene fluoride (PVDF) or polyethylene glycol (PEG)-modified polyimide (PI), respectively. The surface and cross-section images combined with elemental mapping illustrated the effective distribution of the nanocomposites within the polymeric membranes.
View Article and Find Full Text PDF