Biotechnol Bioeng
October 2024
Sonification, or the practice of generating sound from data, is a promising alternative or complement to data visualization for exploring research questions in the life sciences. Expressing or communicating data in the form of sound rather than graphs, tables, or renderings can provide a secondary information source for multitasking or remote monitoring purposes or make data accessible when visualizations cannot be used. While popular in astronomy, neuroscience, and geophysics as a technique for data exploration and communication, its potential in the biological and biotechnological sciences has not been fully explored.
View Article and Find Full Text PDFWith the generation of spatially resolved transcriptomics of microbial biofilms, computational tools can be used to integrate this data to elucidate the multi-scale mechanisms controlling heterogeneous biofilm metabolism. This work presents a Multi-scale model of Metabolism In Cellular Systems (MiMICS) which is a computational framework that couples a genome-scale metabolic network reconstruction (GENRE) with Hybrid Automata Library (HAL), an existing agent-based model and reaction-diffusion model platform. A key feature of MiMICS is the ability to incorporate multiple -omics-guided metabolic models, which can represent unique metabolic states that yield different metabolic parameter values passed to the extracellular models.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are ubiquitous, EPA-designated priority pollutants for soil and groundwater, remaining recalcitrant to bioremediation because of limited bioavailability. In this work, we used naphthalene as a model PAH and soil bacteria Pseudomonas putida G7 to investigate the potential role of chemotaxis to enhance access to PAHs in heterogenous porous media. To this aim, we conducted transport experiments and numerical simulations with chemotactic bacteria and naphthalene trapped within a non-aqueous phase liquid (NAPL) mainly in low permeable areas of a dual-permeability microfluidic device.
View Article and Find Full Text PDFTo mitigate antimicrobial resistance, we developed polymeric nanocarrier delivery of the chemorepellent signaling agent, nickel, to interfere with transport to a surface, an incipient biofilm formation stage. The dynamics of nickel nanocarrier (Ni NC) chemorepellent release and induced chemorepellent response required to effectively modulate bacterial transport for biofilm prevention were characterized in this work. Ni NCs were fabricated with the established Flash NanoPrecipitation method.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2022
In natural systems bacteria are exposed to many chemical stimulants; some attract chemotactic bacteria as they promote survival, while others repel bacteria because they inhibit survival. When faced with a mixture of chemoeffectors, it is not obvious which direction the population will migrate. Predicting this direction requires an understanding of how bacteria process information about their surroundings.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2021
Chemotactic bacteria sense and respond to temporal and spatial gradients of chemical cues in their surroundings. This phenomenon plays a critical role in many microbial processes such as groundwater bioremediation, microbially enhanced oil recovery, nitrogen fixation in legumes, and pathogenesis of the disease. Chemical heterogeneity in these natural systems may produce numerous competing signals from various directions.
View Article and Find Full Text PDFChemotaxis has the potential to decrease the persistence of nonaqueous phase liquid (NAPL) contaminants in aquifers by allowing pollutant-degrading bacteria to move toward sources of contamination and thus influence dissolution. This experimental study investigated the migratory response of chemotactic bacteria to a distribution of residual NAPL ganglia entrapped within a laboratory-scale sand column under continuous-flow at a superficial velocity of 0.05 cm/min.
View Article and Find Full Text PDFChemotaxis has the potential to improve bioremediation strategies by enhancing the transport of pollutant-degrading bacteria to the source of contamination, leading to increased pollutant accessibility and biodegradation. This computational study extends work reported previously in the literature to include predictions of chemotactic bacterial migration in response to multiple localized contaminant sources within porous media. An advection-dispersion model, in which chemotaxis was represented explicitly as an additional advection-like term, was employed to simulate the transport of bacteria within a sand-packed column containing a distribution of chemoattractant sources.
View Article and Find Full Text PDFMeasuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact.
View Article and Find Full Text PDFIn this work, we report a novel method for the creation of superhydrophilic patterns on the surface of hydrophobically coated glass through CO2 laser cleaning. This mask-free approach requires no photolithography for the print of the features, and only a single-step surface pretreatment is needed. The laser-cleaned glass surface enables self-partitioning of liquid into droplet arrays with controllable, quantitative volumes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2016
Nonaqueous-phase liquid (NAPL) contaminants are difficult to eliminate from natural aquifers due, in part, to the heterogeneous structure of the soil. Chemotaxis enhances the mixing of bacteria with contaminant sources in low-permeability regions, which may not be readily accessible by advection and dispersion alone. A microfluidic device was designed to mimic heterogeneous features of a contaminated groundwater aquifer.
View Article and Find Full Text PDFThe use of chemotactic bacteria in bioremediation has the potential to increase access to, and the biotransformation of, contaminant mass within the subsurface. This laboratory-scale study aimed to understand and quantify the influence of chemotaxis on the residence times of pollutant-degrading bacteria within homogeneous treatment zones. Focus was placed on a continuous-flow sand-packed column in which a uniform distribution of naphthalene crystals created distributed sources of dissolved-phase contaminant.
View Article and Find Full Text PDFChemotaxis has been shown to be beneficial for the migration of soil-inhabiting bacteria towards industrial chemical pollutants, which they degrade. Many studies have demonstrated the importance of this microbial property under various circumstances; however, few quantitative analyses have been undertaken to measure the two essential parameters that characterize the chemotaxis of bioremediation bacteria: the chemotactic sensitivity coefficient χ(0) and the chemotactic receptor constant K(c). The main challenge to determine these parameters is that χ(0) and K(c) are coupled together in non-linear mathematical models used to evaluate them.
View Article and Find Full Text PDFOne of the most common methods of tracking movement of bacteria in groundwater environments involves a priori fluorescent staining. A major concern in using these stains to label bacteria in subsurface injection-and-recovery studies is the effect they may have on the bacterium's transport properties. Previous studies investigated the impact of fluorophores on bacterial surface properties (e.
View Article and Find Full Text PDFBiotechnol Bioeng
July 2012
Chemotaxis toward chemical pollutants provides a mechanism for bacteria to migrate to locations of high contamination, which may improve the effectiveness of bioremediation. A microfluidic device was designed to mimic the dissolution of an organic-phase contaminant from a single pore into a larger macropore representing a preferred pathway for microorganisms that are carried along by groundwater flow. The glass windows of the microfluidic device allowed direct image analysis of bacterial distributions within the vicinity of the organic contaminant.
View Article and Find Full Text PDFThe success of in situ bioremediation is often limited by the inability to bring bacteria in contact with the pollutant, which they will degrade. A bench-scale model aquifer was used to evaluate the impact of chemotaxis on the migration of bacteria toward the source of a chemical pollutant. The model was packed with sand and aqueous media was pumped across horizontally, simulating groundwater flow in a homogenous aquifer.
View Article and Find Full Text PDFThe motility of microorganisms affects their transport in natural systems by altering their interactions with the solid phase of the soil matrix. To assess the effect of these interactions on transport parameters, a series of breakthrough curves (BTCs) for motile and nonmotile bacteria, including E. coli and P.
View Article and Find Full Text PDFA two-dimensional mathematical model was developed to simulate transport phenomena of chemotactic bacteria in a sand-packed column designed with structured physical heterogeneity in the presence of a localized chemical source. In contrast to mathematical models in previous research work, in which bacteria were typically treated as immobile colloids, this model incorporated a convective-like chemotaxis term to represent chemotactic migration. Consistency between experimental observation and model prediction supported the assertions that (1) dispersion-induced microbial transfer between adjacent conductive zones occurred at the interface and had little influence on bacterial transport in the bulk flow of the permeable layers and (2) the enhanced transverse bacterial migration in chemotactic experiments relative to nonchemotactic controls was mainly due to directed migration toward the chemical source zone.
View Article and Find Full Text PDFStatic capillary assays were performed to observe the distribution of Escherichia coli and several mutant strains at the interface between an aqueous solution and a Gelrite particulate suspension, used as a model porous medium. Motile smooth-swimming mutant bacteria (E. coli HCB437) accumulated at the interface, but did not penetrate very far into the Gelrite suspension.
View Article and Find Full Text PDFThe significance of chemotaxis in directing bacterial migration toward contaminants in natural porous media was investigated under groundwater flow conditions. A laboratory-scale column, with a coarse-grained sand core surrounded by a fine-grained annulus, was used to simulate natural aquifers with strata of different hydraulic conductivities. A chemoattractant source was placed along the central axis of the column to model contaminants trapped in the heterogeneous subsurface.
View Article and Find Full Text PDFEnviron Sci Technol
May 2009
Bacterial populations were observed using dark-field light scattering at porous media interfaces comprised of a dilute solution containing the polymer additives methylcellulose and a transparent particulate suspension composed of mechanically agitated Gelrite gellan gum. Population-scale experiments with a nonchemotactic smooth-swimming mutant, Escherichia col HCB 437, yielded a variety of distinct and reproducible bacterial distributions that included highly concentrated bands of bacteria near the interface. While no physical attachment was observed between the bacteria and granular Gelrite media, the population exhibited surface associations characterized by reversible physical obstructions of the motile bacteria at the solid granular surfaces.
View Article and Find Full Text PDFEnviron Sci Technol
March 2009
Subsurface bioremediation is often hindered by the inability to achieve good mixing between injected bacteria and residual contaminants. Chemotaxis, which is the ability of bacteria to migrate preferentially toward higher concentrations of certain chemical attractants, could potentially increase bacterial transport into the contaminated zone. To observe and quantify this chemotactic enhancement to bacterial dispersion transverse to groundwater flow, a microfluidic device--a porous T-sensor-was created.
View Article and Find Full Text PDFThe inter-relationship of growth and chemotactic response exhibited bytwo common soil-inhabiting bacteria was investigated to determine its impact on bacterial migration. Filter-chambers were used to simulate aquifer sediments characterized by vertical gradients of organic contaminants in both artificial groundwater flow systems in the laboratory and within the screened intervals of observation wells in a sandy aquifer. A labile model contaminant (acetate) was added to the top compartments of the three-part chambers, whereas bacteria with a demonstrated propensity to grow on and chemotactically respond to acetate were introduced to the lower compartments.
View Article and Find Full Text PDFBiotechnol Bioeng
July 2008
Swimming bacteria sense and respond to chemical signals in their environment. Chemotaxis is the directed migration of a bacterial population toward increasing concentrations of a chemical that they perceive to be beneficial to their survival. Bacteria that are indigenous to groundwater environments exhibit chemotaxis toward chemical contaminants such as hydrocarbons, which they are also able to degrade.
View Article and Find Full Text PDFMotile bacteria accumulated at the interface between an aqueous solution and a polymer gel suspension. The gel suspension was produced using Gelrite and contained 50-500 microm semisolid gel particulates in aqueous buffer. Smooth-swimming (HCB437) and wild-type (HCB1) Escherchia coli displayed normal swimming behaviors in the aqueous buffer but exhibited no translational motion when obstructed by the semisolid particulates of the gel suspension.
View Article and Find Full Text PDF